
Technische Universität Berlin

Multi-Hypotheses Kalman Filter based

Self-Localization for Autonomous Soccer Robots

Masterarbeit
am Fachgebiet Agententechnologien in betrieblichen Anwendungen und der

Telekommunikation (AOT)
Fakultät IV Elektrotechnik und Informatik

Technische Universität Berlin

vorgelegt von
Qian Qian

Matriculation Number: 359738

Betreuer: Dr. Yuan Xu,
Prof. Dr.-Ing. habil. Sahin Albayrak,
Prof. Dr. Ben Juurlink

July 24, 2015

Hiermit versichere ich, dass ich diese Arbeit selbstständig verfasst und keine an-
deren als die angegebenen Quellen und Hilfsmittel benutzt habe.

Hereby I declare that I wrote this thesis myself with the help of no more than
the mentioned literature and auxiliary means.

Berlin, July 24, 2015

. .
Qian Qian

Acknowledgements

First of all, I would like to thank my mentor Dr. Yuan Xu for giving me valuable
advice and guidance throughout my thesis work. Also I would like to thank the other
DAInamite teams members Martin Berger and Erdene-Ochir Tuguldur who always gave
me inspirations and motivations. Lastly, I would like to thank my family and all the
friends who supported me throughout the process.

Abstract

Self-localization is a crucial part for autonomous robots, particularly in the RoboCup
Standard Platform League (SPL). The robot needs to know where it is in the game
field to accomplish the remaining decision making tasks such as passing the ball to the
teammates, saving the goal, path planning and so on. The task herein is mainly to
estimate the robot’s position accurately from its sensor data. However the challenge is
that the robot only observes its surrounding world partially at a given time, and it is
sometimes not sufficient enough to determine its exact position. In addition, the robot
must also identify the landmarks on the game field which could be ambiguous in most
of the cases.

In this thesis, two localization methods are investigated and implemented for the
NAO robot in the RoboCup SPL, namely optimization based localization and multi-
hypotheses Kalman filter localization. Optimization based localization differs from the
classic Kalman filter in the measurement update step, where the robot position is esti-
mated by minimizing the measurement error of the field line points in an iterative opti-
mization process. On the other hand, given more landmarks, multi-hypotheses Kalman
filter localization describes a multi-modal probability distribution and can fast re-localize
the kidnapped robot by incorporating the sensor resetting technique from the particle
filter. At the same time, it also inherits the advantages from the Kalman filter of being
accurate and efficient in position estimation. The benchmark results presented in this
thesis show that multi-hypotheses Kalman filter localization outperforms optimization
based localization and particle filter localization in terms of accuracy and efficiency.

Zusammenfassung

Selbstlokalisierung ist unerlässlich für autonome Roboter, insbesondere in der RoboCup
Standard Platform League (SPL) spielt sie eine wichtige Rolle. Der Roboter muss seine
Position auf dem Spielfeld kennen um Spielmanöver sinnvoll durchführen zu können, wie
zum Beispiel einen Pass zu seinen Mitspielern, das Schützen des Tores, das Planen von
Wegen und so weiter. Die Aufgabe besteht nun hauptsächlich darin, die Position des
Roboters anhand der Daten, welche seine Sensoren liefern, möglichst genau zu schätzen.
Jedoch nimmt der Roboter seine Umgebung zu gegebener Zeit nur teilweise wahr und in
vielen Fällen reicht es nicht aus, allein die Position des Roboters zu kennen. Des weiteren
muss der Roboter Orientierungspunkte auf dem Spielfeld erkennen können, welche in den
meisten Fällen in uneindeutiger Weise vom Roboter wahrgenommen werden.

In dieser Arbeit sollen zwei Lokalisierungsmethoden für den NAO-Roboter im RoboCup
SPL untersucht und implementiert werden, namentlich die optimierungsbasierte Loka-
lisierung und die Multi-Hypothesen-Kalman-Filter Lokalisierung. Die optimierungs-
basierte Lokalisierung unterscheidet sich vom klassischen Kalman-Filter in der Kor-
rektur, wobei die Position des Roboters durch iterative Minimierung des Messfehlers
bezüglich der Feldlinienpunkte bestimmt wird. Andererseits beschreibt der Multi-Hypot-
hesen-Kalman-Filter, stehen weitere Orientierungspunkte zur Verfügung, eine multi-
modale Wahrscheinlichkeitsverteilung und kann dadurch einen gekidnappten Roboter
schnell lokalisieren, dass er die Sensor-Resetting-Methode vom Partikelfilter mitver-
wendet. Zur gleichen Zeit erbt der Multi-Hypothesen-KalmanFilter vom klassischen
Kalman-Filter die Eigenschaft, ein akkurater und effizienter Schätzer der Position zu
sein. Die Vergleichswerte, welche in dieser Arbeit präsentiert werden, zeigen die klare
Überlegenheit der Multi-Hypothesen-Kalman-Filter Lokalisierung gegenüber der opti-
mierungsbasierten Lokalisierung und der Partikelfilter Lokalisierung bezüglich Genauigkeit
und Effizienz.

Contents

List of Figures XIII

List of Tables XV

Acronyms XVII

1. Introduction 1
1.1. Motivation . 1

1.2. Problem Statement . 2

1.2.1. Robot Hardware . 2

1.2.2. Standard Platform League Field 3

1.2.3. Problem Formulation . 3

1.3. Thesis Outline . 6

2. Background and Related Work 7
2.1. Bayes Filters . 7

2.1.1. Particle Filter . 8

2.1.2. Kalman Filter and its Ramifications 9

2.1.2.1. Kalman Filter . 9

2.1.2.2. Kalman Filter Variants 10

2.1.2.3. Multi-Model Kalman Filter 11

2.2. State of the Art of Robot Localization in RoboCup 12

2.3. Software Architecture of DAInamite . 13

2.4. Vision Perception . 13

3. Self-localization Pipeline 17
3.1. Motion Update . 18

3.1.1. Motion Model . 18

3.1.2. Process Noise Model . 19

3.2. Sensor Update . 20

3.2.1. Optimization Based Model . 20

3.2.2. Feature Based Model . 21

3.2.2.1. “T” and “X” Junction Detection 21

3.2.2.2. Measurement Model Choice 21

3.2.2.3. Measurement Noise Model 25

3.2.2.4. Landmark Correspondence 27
3.2.2.5. Multiple Simultaneous Measurements 33

4. Multi-Hypotheses Kalman Filter 35
4.1. Hypothesis Model Weighting . 35
4.2. Landmark Based Resampling . 36

4.2.1. “L” Junction Look Up Table . 38
4.3. Best Hypothesis Model and Confidence . 39
4.4. Model Pruning . 40

4.4.1. Pruning by Weight . 40
4.4.2. Merging by Mahalanobis Distance 40
4.4.3. Pruning by Distance to Best Model 42

5. Analysis and Benchmark 43
5.1. Experiments Setup . 43

5.1.1. Ground Truth . 43
5.1.2. Perception Log . 45

5.2. Code Optimization . 45
5.3. Benchmarks . 46

5.3.1. Accuracy . 47
5.3.2. Functionality . 58
5.3.3. Efficiency . 58

6. Conclusion and Future Work 61
6.1. Conclusion . 61
6.2. Future Work . 61

Bibliography 63

Appendices 65

A. Appendix 65
A.1. Speed Profiles of Localization Algorithms 65

List of Figures

1.1. Body construction of NAO V4. 3
1.2. The defined coordinate system of physical world frame. 5

2.1. Physical Architecture of DAInamite Code Base. 14
2.2. Example for a typical vision perception result of the robot in the field. . . 15
2.3. Only camera frame for bottom camera is shown 16

3.1. Self-localization pipeline. 17
3.2. Relative odometry change. 19
3.3. All L junctions in the field. 22
3.4. Detection of “L”, “T” and “X” junction in the field. 24
3.5. Observation given in Cartesian coordinates. 24
3.6. Line represented in Hough space. 25
3.7. Measurement noise with respect to landmark distance in robot frame. . . 26
3.8. Landmarks in image plane. 27
3.9. Landmarks in robot frame. 28
3.10. Measurement covariance of the point landmark. 29
3.11. Matching of end points of the detected line. 30
3.12. The criteria of determining the line correspondence. 31
3.13. Matching result of line and penalty area. 32

4.1. “L” junction look up table . 39
4.2. Visualization of two Gaussian distributions 41

5.1. The 3D printed support and the pattern marker. 44
5.2. SSL-Vision color and camera calibration result, and robot position result. 44
5.3. Particle filter localization trajectory compared with ground truth trajectory. 47
5.4. Optimization based localization trajectory compared with ground truth

trajectory. 48
5.5. Multi-hypotheses Kalman filter localization trajectory compared with ground

truth trajectory. 48
5.6. Particle filter localization result and error in θ dimension. 49
5.7. Particle filter localization result and error in θ dimension. 50
5.8. Particle filter localization result and error in θ dimension. 51
5.9. Optimization based localization result and error in x dimension. 52
5.10. Optimization based localization result and error in y dimension. 53

List of Figures

5.11. Optimization based localization result and error in θ dimension. 54
5.12. Multi-hypotheses Kalman filter localization result and error in x dimension. 55
5.13. Multi-hypotheses Kalman filter localization result and error in y dimension. 56
5.14. Multi-hypotheses Kalman filter localization result and error in θ dimension. 57

A.1. Program profile of particle filter localization for executing the perception
log on the NAO robot. 66

A.2. Program profile of optimization based localization for executing the per-
ception log on the NAO robot. 67

A.3. Program profile of multi-hypotheses Kalman filter localization for execut-
ing the perception log on the NAO robot. 68

XIV

List of Tables

1.1. Schematic diagram of the soccer field. 4

2.1. Kalman Filter Algorithm . 10
2.2. Extended Kalman Filter Algorithm. 11

5.1. Accuracy comparison between different localization algorithm results . . . 58
5.2. Standard deviation comparison between different localization algorithm

results . 58
5.3. Average execution time per frame of the perception log for different lo-

calization algorithms running on the NAO robot. 59

List of Tables

XVI

Acronyms

AI Artifical Intellegence.

EKF Extended Kalman Filter.

FIFO First In, First Out.

FSR Force-sensing Resistor.

GPS Global Positioning System.

HD High Definition.

IMU Inertial Measurement Unit.

MCL Monte-Carlo Localization.

PDF Probability Distribution Function.

SPL Standard Platform League.

UKF Unscented Kalman Filter.

1. Introduction

Robot Soccer World Cup, known as RoboCup, is an annual international robotics com-
petition conducted since 1997. It aims to foster research and development of robotics
and Artifical Intellegence (AI), by offering a public appealing but challenging competi-
tion. RoboCup consists of five major competition domains, they are RoboCup Soccer,
RoboCup Rescue, RoboCup@Home, RoboCup Logistics and RoboCup Junior. Cur-
rently the RoboCup Soccer includes several soccer leagues to cover difference research
challenges. The main concern in this thesis is the Standard Platform League (SPL) un-
der the sub-category of RoboCup soccer, in which all the teams use identical humanoid
robot NAO that is manufactured by Aldebaran Robotics. The robots should operate
fully autonomously without external control. The research regarding RoboCup SPL has
been actively conducted under various topics. DAInamite, a team from DAI-Labor, TU-
Berlin, is dedicated in advancing robot technology; the team has continuous research on
humanoid robot NAO and their first participation in the world championship in the SPL
was in RoboCup 2013 in Eindhoven, reaching the quarter finals. The code base from
DAInamite consists of several modules including motion, vision, behavior, localization,
etc, which makes the NAO robot fully functional and competitive in the RoboCup game.
The implementation of the localization algorithm proposed in this thesis will be based
on the current software infrastructure of DAInamite.

1.1. Motivation

Localization awareness is a central aspect for many pervasive computing applications,
especially for autonomous robots playing soccer. Just like human, the robots need to
know where themselves are on the field when playing soccer, in order to make decisions
and undertake actions. The high level decision making depends highly on the accuracy
of the location of the robot, e.g. moving towards a particular direction to split the
defense of the defender, or kicking the ball to the goal, or distinguishing the opponent’s
goal on its own. If the result of localization is inaccurate, it will not only curtail the
performance of other algorithms like ball tracking and goal saving, but also prohibit
developing advanced techniques for competitive enhancement like opponent modeling or
passing the ball to teammates.

In many other applications like self driving car, many sensors including the Global
Positioning System (GPS), laser scanners, radar or high end 3D cameras are used to help
accomplish the localization task. However, for the NAO robot, with limited number of
sensors and restricted computational capability of the processing unit, the localization

1. Introduction

problem becomes particularly challenging. The robot is able to get odometry infor-
mation from the body kinematics and Inertial Measurement Unit (IMU) to calculate
the supposed walking distance, and using this to help predict its location. Although
the odometry information is the most direct measurement for the input of localization
calculation, inherited systematic errors like asymmetry of the installation of the joint
motors will cause the robot to constantly produce offset in walking, or unpredicted envi-
ronment factors like foot slipping on the ground, bump into obstacles. The accumulated
odometry errors throughout a time period will result in unacceptable localization result.

Besides odometry information, the NAO robot can also use its two High Definition
(HD) cameras to sense the surrounding environment, but without depth information.
Since the cameras have 60.9◦ horizontal field of view and 47.6◦ vertical field of view, the
robot can only get local partial perception of the field at any given time. With image
processing, landmarks or features can be extacted from the images as another input for
localization calculation. However, due to the non-uniqueness of most of the landmarks
in the SPL field and false positive results from image processing, the landmarks become
severely ambiguous. On the other hand, the image may also be blurred due to the
motion of the robot, and the environment is dynamically changing as the other moving
robots may occlude the landmark. These challenges impose significant difficulties not
only in detecting the features from the noisy image, but also the knowhow of employing
ambiguous landmarks for localization.

Furthermore, the soccer field itself is symmetrically structured, which means the two
halves of the field are the same. To counter this problem, normally features outside of
the field need to be considered to differentiate one side from the other. Not to mention,
NAO robot has limited computation power, which requires the localization algorithm to
be computationally efficient and not to affect other critical modules like motion which
have higher execution priorities.

1.2. Problem Statement

1.2.1. Robot Hardware

The robot used in this thesis for localization algorithm development is NAO V4 robot
from Aldebaran Robotics. The robot is 573 mm in height, 275 mm in width. The body
construction and the equipped sensors are illustrated in Figure 1.1. Also, the robot
has one 2-axis gyrometer and one 3-axis accelerometer inside the body, a Force-sensing
Resistor (FSR) on each foot bottom, which is not shown in Figure 1.1.

The two cameras are placed on the face, each camera can capture image of resolution
up to 1280× 960@30fps.

The robot runs a Gentoo version of Linux and the mother board resides in the head
of the robot. The specification of the mother board is:

• ATOM Z530 1.6 GHz CPU 1

1It is a single core processor, with Intel Hyper-Threading technology.

2

1.2. Problem Statement

Figure 1.1: Body construction of NAO V4. [1]

• 1 GB RAM

• 2 GB Flash memory

• 8 GB Micro SDHC

1.2.2. SPL Field

Every year the rules of the SPL are modified on the basis of the old ones to make them
closer to the rules of real soccer game and at the same time increase the difficulty levels
of the game. Significant changes include the field size being enlarged from 6m× 4m to
9m × 6m in 2013, and the color of goal posts become white instead of yellow in 2015.
The schematic diagram of the soccer field and corresponding dimensions are depicted in
Table 1.1.

1.2.3. Problem Formulation

In the robotic localization problem, the algorithm is mainly concerned with estimating
the “state” of the robot. The “state” in the context of the RoboCup SPL refers to

3

1. Introduction

ID Description Length (in mm) ID Description Length (in mm)
A Field length 9000 E Penalty area length 600
B Field width 6000 F Penalty area width 2200
C Line width 50 G Penalty mark distance 1300
D Penalty mark size 100 H Center circle diameter 1500

I Border strip width 700

Table 1.1: Schematic diagram of the soccer field (not to scale) and corresponding dimen-
sions in mm. Note that measurements on this diagram are made to the center
of lines. [2]

the location (2D Cartesian coordinate) and the orientation of the robot in the physical
world. In this case the state to be estimated can be represented as a 3 dimensional
vector x(t) as follows:

x(t) =

xr(t)yr(t)
θr(t)


where (xr(t), yr(t)) denote the Cartesian coordinates and θr(t) is the orientation of the
robot at time t. As illustrated in Figure 1.2, the coordinate system of physical world
frame is defined with its origin located at the center of the field, and its positive x-axis
axle pointing to the opponent’s goal.

For robots in SPL, the localization is intended to achieve the following tasks:

• Global Localization: it happens at the beginning of the game, where the robot has

4

1.2. Problem Statement

x

y

yr

xr

θr

opponent’s
goal

Figure 1.2: The defined coordinate system of physical world frame.

to localize itself without the knowledge of its initial position.

• Position Tracking: it assumes that the initial position of the robot is known, and
the position tracking can be achieved by accommodating the noise from motion
and measurements.

• Kidnapped robot: the robot can be kidnapped and teleported to another position
in the game. The problem is similar to global localization, except that the robot
might believe it knows where it is while it does not.

As stated in section 1.1, the environment the robot resides in is inherently unpredictable,
the sensors are limited in what they can perceive, the joint motors are also to some extent
unpredictable. Hence, a probabilistic representation is used to describe the uncertainty
of the robot’s location, the probability distribution over the state x(t) is called belief,
written as Bel(xt).

In order to estimate the state x(t) and the belief Bel(xt), the localization algorithm
takes the detected objects from vision in the field as one of the inputs. The DAInamite’s
vision module can detect yellow goal post, center circle, penalty area, lines in the field
and boundary of the field, and by projecting the landmarks from the image frame to
the robot’s local frame, distances to the robot can be estimated. Furthermore, the
odometry information is also fed into the localization algorithm. The odometry of the
robot is obtained from the motion module by calculating the body kinematics, given
that the robot has at least one foot placed on the ground.

5

1. Introduction

1.3. Thesis Outline

The rest of the thesis is structured as follows:

Chapter 2 describes the background and related work concerned to the fundamen-
tals of Bayes theories and localization methods developed for robots in RoboCup, as
well as the current software architecture from the team DAInamite, to which the local-
ization algorithm will be integrated.

Chapter 3 explains the motion model and sensor model designed for Extended Kalman
Filter (EKF) based localization. It also illustrates the strategies to find landmark cor-
respondence based on ambiguous observations.

Chapter 4 describes the design of multi-hypotheses Gaussian models which encap-
sulate a EKF in each model. It explains the mechanism of resampling and pruning step
to maintain a multi-modal probability distribution.

Chapter 5 comprehensively analyses the functionality, accuracy and efficiency bench-
marks of different localization algorithms.

Chapter 6 summarizes the thesis with a conclusion and gives an outlook about the
possible future work in this regard.

6

2. Background and Related Work

In robotics, significant research has been carried out to make the robot localize itself
in the environment more accurately. Many localization methods based on probability
theories are proposed. Most of them draw their fundamental theory from Bayers filter,
and later they evolve into more specific filters such as Particle filter [3] or Kalman filter
[4] variants like EKF [5] and Unscented Kalman Filter (UKF) [6]. Each kind of filters
has its own intrinsic properties and has advantages and disadvantages depending on the
application.

2.1. Bayes Filters

Bayes filter aims to sequentially estimate the belief of the state conditioned on all the
information obtained in the sensor data. As illustrated in Equation 2.1, it assumes
that, the sensor data has a sequence of time-indexed sensor data. The belief of state
x(t), Bel(xt) can be represented as a posterior probability density conditioned on all the
sensor data from the past observations, z1, z2 . . . zt.

Bel(xt) = p(xt|z1, z2, . . . , zt) (2.1)

However, the computational complexity of such belief grows exponentially with the in-
crease of observations. To make the computation feasible, Bayes filter assumes that the
dynamic system is a Markov process. It means the state belief at time t depends only
on the previous state information at time t− 1. Bayes filter includes two components to
estimate the state belief: time update and measurement update.

Time update (prediction)
Firstly, a prediction is made by using the motion model of the robot, as formulated in
Equation 2.2.

Bel−(xt)←
∫
p(xt|xt−1)Bel(xt−1)dxt−1 (2.2)

Where p(xt|xt−1) depicts the system’s dynamics in which a motion model is used to
describe how the system state changes due to motion movement.

Measurement update (correction)
By making a measurement from the sensor, the filter corrects the prediction using this
observation.

Bel(xt)← αtp(zt|xt)Bel−(xt) (2.3)

2. Background and Related Work

p(zt|xt) in Equation 2.3 represents the probability of making observation zt given that
the robot is at position xt. It generally describes the perceptual model of the robot.
Coefficient αt is a normalization factor to make sure the belief calculated add up to 1.

Moreover, the update of the belief in Bayes filter is recursive, which means that, the
belief at time t is calculated from belief at time t−1. Bayes filter provides the theoretical
basis for the following filters to be discussed, namely particle filter and Kalman filter.

2.1.1. Particle Filter

Particle filter, also known as Monte-Carlo Localization (MCL), is the localization al-
gorithm that is currently under use for the SPL robot in DAInamite. Particle filter
represent a probability distribution by a set of samples or particles. Each particle rep-
resents a concrete state in the current system at time t, in our case it will be the one
instantiation of coordinates and the orientation. Meanwhile, each particle is also associ-
ated with a weight which indicates how probable the state is in the system. In practice,
the number of particles is huge in order to provide a close hypothesis for the true world,
and normally 1000 particles are needed to approximate the SPL soccer field. Following
the principle of Bayes filter, the motion update will move the particles according to the
motion model; measurement update will result in a resampling of the particles, in which
the particles with higher weight will survive, on the other hand, the ones with lower
weight will die out, and in replacement, particles close to the area of the surviving ones
will be generated. In the DAInamite team, due to limited computation power of NAO,
only 60 particles are instantiated in the system. With such a low number of particles,
the system state can hardly be estimated. As an enhancement for this, the technique of
particle filter resetting is used to improve the performance of the localization algorithm
with low number of particles. It produces particles with high weights for locations where
unambiguous observations are made. The high weight particles help to provide relatively
reliable base states which result in correct location interpretation for the later recursive
processing.
Advantages

• Particle filter is easy to implement.

• Particle filter is robust in localization.

• Particle filter works with multi-modal probability distribution and is applicable in
both linear and non-linear systems.

• By scaling up the number of particles, the accuracy of the result could be improved
at the cost of more computational effort.

Disadvantages

• Computationally intensive when the number of particles is high.

• Estimation accuracy reduces when the number of particles is low.

8

2.1. Bayes Filters

2.1.2. Kalman Filter and its Ramifications

2.1.2.1. Kalman Filter

Kalman filter was invented by Swerling (1958) and Kalman (1960) as a technique for
filtering and prediction in linear Gaussian systems. In Kalman filter, it assumes the
belief of a state conforms to a Gaussian distribution.

A Gaussian distribution for a single random variable x has the form in Equation 2.4.

f(x, µ, σ) =
1

σ
√

2π
e−(x−µ)

2/2σ2
(2.4)

The parameter µ in this definition is the mean or expectation of the distribution. The
parameter σ is its standard deviation; its variance is therefore σ2. The larger the variance
is, the wider the distribution spreads. However, in the problem domain of the robot
localization, the state of the robot is a vector with three variables: 2D coordinate and
orientation. To represent a multivariate Gaussian distribution, the following definition
is used:

fx(x1, . . . , xk) =
1

σ
√

(2π)k|P |
exp(−1

2
(x− µ)TP−1(x− µ)) (2.5)

It mimics the form of its one dimensional counterpart. x represents the state vector,
k is the dimension of the state, µ is the expectation of the distribution, P represents a
covariance matrix which is positive-semidefinite and symmetric. If the state is of three
variables, then P is a 3× 3 matrix.

The Kalman filter model assumes the true state at time t is evolved from the state at
(t− 1) according to Equation 2.6.

xt = Ftxt−1 +Btµt + wt (2.6)

Where

• Ft is the state transition model which is applied to the previous state xt−1;

• Bt is the control-input model which is applied to the control vector ut;

• wt is the process noise which is assumed to be drawn from a zero mean multivariate
normal distribution with covariance Qt.

wt ∼ N(0, Qt) (2.7)

At time t, an observation (or measurement) zt of the true state xt is made according to
Equation 2.8.

zt = Htxt + vt (2.8)

Where Ht is the observation model which maps the true state space into the observed
space and vt is the observation noise which is assumed to be zero mean Gaussian white
noise with covariance Rt.

vt ∼ N(0, Rt) (2.9)

9

2. Background and Related Work

Prediction
Predicted (a priori) state estimate x̂t|t−1 = Ftx̂t−1|t−1 +Btut
Predicted (a priori) covariance estimate Pt|t−1 = FtPt−1|t−1F

T
t +Qt

Measurement Update (correction)
Innovation or measurement residual ỹt = zt −Htx̂t|t−1
Innovation (or residual) covariance St = HtPt|t−1H

T
t +Rt

Optimal Kalman gain Kt = Pt|t−1H
T
t S
−1
t

Updated (a posteriori) state estimate x̂t|t = x̂t|t−1 +Ktỹt
Updated (a posteriori) covariance estimate Pt|t = (I −KtHt)Pt|t−1

Table 2.1: Kalman Filter Algorithm

Since Kalman filter is a variant of Bayes filter, it follows the prediction-correction routine
defined in Bayes filter. The detailed Kalman filter algorithm is shown in Table 2.1.

Advantages

• It is known from the theory that the Kalman filter is an optimal estimator in case
that, a) the model perfectly matches the real system, b) the entering noise is white
and c) the covariances of the noise are exactly known.

• It is computationally efficient for the prediction and correction steps, because the
calculation can be done efficiently using matrix multiplication.

Disadvantages

• Kalman filter works well only with linear system dynamics. In the SPL, neither the
motion model nor the observation model of the robot is linear, thus the state tran-
sition equation defined above cannot be straightforwardly used. Other techniques
to deal with non-linearity proposed in EKF and UKF need to be applied.

• Kalman filter works with uni-modal probability distribution, in other words, uni-
modal means there is only one peak in the probability distribution under consid-
eration. However, due to the ambiguity of the vision data input, there could be
multiple locations which are the potential candidates. In this case, the probability
distribution is multi-modal.

2.1.2.2. Kalman Filter Variants

In our robot system, the sensor model and motion model for robot localization are not
linear, thus the Kalman filter is not able to tackle. In order to deal with nonlinearity,
Kalman filter variants like EKF and UKF are formulated. EKF adapted the technique
from Talyor series expansion to linearize the model at the point of its prior mean, and
can capture the posterior mean and covariance accurately to the first order from the

10

2.1. Bayes Filters

nonlinearity. On the other hand, UKF approximates a guassian distribution by gener-
ating 2L + 1 number of sigma points (L is the dimension of the state). By applying
transformation on each sigma point and calculating the mean and covariance based on
the sigma points, it is proposed in [7] that a higher estimation accuracy than EKF can
be obtained. In this thesis, considering the efficiency in calculation of using EKF, the
localization algorithm based on EKF will be developed.

EKF requires the state transition and observation models not to be linear functions
of the state but instead differentiable. So the state transition and observation can be
expressed as follows:

x̂t|t−1 = f(x̂t−1|t−1, ut) + wt (2.10)

zt = h(x̂t|t−1) + vt (2.11)

The full EKF algorithm is described in Table 2.2.

Prediction
Predicted state estimate x̂t|t−1 = f(x̂t−1|t−1, ut)

Predicted covariance estimate Pt|t−1 = FtPt−1|t−1F
>
t +Qt

Measurement Update (correction)
Innovation or measurement residual ỹt = zt − h(x̂t|t−1)

Innovation (or residual) covariance St = HtPt|t−1H
>
t +Rt

Near-optimal Kalman gain Kt = Pt|t−1H
>
t S
−1
t

Updated state estimate x̂t|t = x̂t|t−1 +Ktỹt
Updated covariance estimate Pt|t = (I −KtHt)Pt|t−1

Table 2.2: EKF Algorithm.

The prediction and measurement update implementation for EKF are basically the
same as Kalman filter, except the transition matrix Fk and observation matrix Hk be-
come the Jacobian matrices defined in Equation 2.12 and Equation 2.13.

Ft =
∂f

∂x

∣∣∣∣
x̂t−1|t−1,ut−1

(2.12)

Ht =
∂h

∂x

∣∣∣∣
x̂t|t−1

(2.13)

2.1.2.3. Multi-Model Kalman Filter

The Kalman filters including EKF and UKF assume that the posterior probability is
a Gaussian distribution, it performs rather like a maximum likelihood estimator than
as a minimum variance estimator [8]. As a result, it greatly reduces the amount of
information which is in the true density distribution which might be multi-modal. To
overcome the shortcoming of Kalman filter and its ramifications which perform poorly
in multi-modal probability distribution, Multi-model Kalman filter was proposed in [8].

11

2. Background and Related Work

Multi-model Kalman filter represents the probability distribution using the weighted
sum of multiple Gaussian distribution models, and each Gaussian distribution model i
has its weight αi, for αi ∈[0, 1].

For each model, the multivariate normal Probability Distribution Function (PDF) is
given by:

pi(x) = αi
1

σ
√

(2π)k|Pi|
exp(−1

2
(x− µ)TP−1i (x− µ)) (2.14)

The overall mixture PDF is therefore:

p(x) =
N∑
i=1

pi(x) (2.15)

The mixture of Gaussian representation allows constructing a sensor model with one
Gaussian term for each possible correspondence.

During the measurement update, the weight αi is updated using the method according
to [8]:

αi(x) = να′i
1

σ
√

(2π)k|Pη|
exp(−1

2
η−1P−1η η) (2.16)

Where η = (zt − ẑi) indicate the m-dimensional innovation vector between the mea-
sured observation zt and the expected observation ẑi for the fixed correspondence ac-
cording the i’th model. Pη is the sum of the measurement and the prediction covariance,
and ν is a normalization factor.

There exists two situations to be considered for measurement update for multi-model
Kalman filter. One is when the observation is unambiguous, which means when goal
post or unique land marks have been detected, so only one approximation of the robot
state will be generated from the vision. In this case, the measurement update will
be applied on each Gaussian term and result in the same number of terms as before.
Another case is when the vision measurement is ambiguous, for example, it generates
more than one approximations of the robot state from the vision, because the landmarks
are not unique or cannot provide enough information. In this case, supposing initially
the system has M Gaussian models, and the robot observes a landmark which has N
occurrences in the field, then the models will be split into M ×N Gaussian models after
update. With ambiguous measurement update, the terms of Gaussian are increasing
multiplicatively. Model merge equations and decisions has been proposed in [9], in
which several Gaussian models are merged into one if certain metrics are met. In [10],
for efficiency, the author only takes the Gaussian models with maximum likelihood, and
compensates the information which is lost when models are pruned by introducing filter
resetting technique to reproduce the missing models, which is an ingredient taken from
particle filter theory.

2.2. State of the Art of Robot Localization in RoboCup

Most localization algorithms applied in RoboCup SPL falls into the class of either particle
filter or Kalman filter based localization. Quinlan and Middleton from Team RoboEire-

12

2.3. Software Architecture of DAInamite

ann use multiple model Kalman filters for robot localization [9]. They split the Gaus-
sian model when ambiguous measurement happens to cover the multi-modal hypothesis
distribution. The problem of this strategy is the multiplicatively increasing number of
Kalman models during model split, therefore a model merge step is proposed to combine
the models. Team NaoDevil also developed their localization using a multi-hypothesis
UKF. However, instead of model splitting, they adopt sensor resetting technique which
is commonly used in particle filter [10]. It argues that the pruning technique in [9] will
delete temporarily low possibility Gaussian model which may become more probable in
the long term.

However, particle filter or Kalman filter is not the only solution for localization, team
Berlin United also proposed a constraint based world modeling for localization [11] to
overcome the reduction of landmarks such as beacons or colored goals in RoboCup. They
build robot position constrains using the geometry property of the lines in the field. In
midsize league, a localization method based on optimization approach [12] is proposed,
it tries to calculate the perfect match of the vision with the field.

2.3. Software Architecture of DAInamite

DAInamite adopted modular programming pattern, so the tasks could be isolated in
different modules. And more importantly, different people can focus on the development
of their own modules without interfering other modules. In addition to C++, Python is
mostly used in the DAInamite team’s code. The time-critical components for motion,
and vision are implemented in C++. The remaining modules such as localization, behav-
ior, and ball-tracking are implemented in Python. The python modules communicate
with the C++ modules via python C-bindings. The modules which access the hardware
of the robot will be connected to Naoqi. Naoqi is the software framework from Alde-
baran, through which the NAO robot can be directly controlled. A brief illustration of
the physical architecture of the software is shown in Figure 2.1.

2.4. Vision Perception

As seen in Figure 2.1, localization is one sub-module of pyagent module. In reality,
localization is running as a separate thread at 30 Hz. Localization module will be able
to get odometry information from motion module and vision results from vision module.
To reduce the computation burden, the raw images being processed from the cameras
are of resolution 640×480. From the images, the vision module extracts features such as
field lines, field border, orange balls, yellow goals as shown in Figure 2.2. The localization
module is concerned only with the features from the vision results instead of the raw
image.

The detected lines result from both sides of the white field line, and each detected
line is a vector with direction. For example, the line with number 11 in Figure 2.2 is a
vector with its start point indicated by blue and end point indicated by white. Along
the direction of the line vector, the right side of it is always the white line.

13

2. Background and Related Work

Figure 2.1: Physical Architecture of DAInamite Code Base.

Among most of the localization methods used in SPL game, the vision results are first
transformed from image plane to camera frame, and then projected from the camera
frame into the robot local frame in order to do further processing. In the team DAIna-
mite, the camera frame and robot local frame are defined as illustrated in Figure 2.3,
where the camera frame has its origin at the place of the camera, and the robot local
frame is defined by torso projection on the ground. The camera matrix defines the
location and orientation of the camera frame relative to the robot local frame.

14

2.4. Vision Perception

Figure 2.2: Example for a typical vision perception result of the robot in the field. De-
tected field lines are indicated by white vectors with start point in blue dot
and end point in white dot. Field border is indicted by long green line. The
two goal posts are indicted by yellow strips and the ball is indicted by an
orange circle.

15

2. Background and Related Work

Figure 2.3: camera frame and robot local frame. In both frames, x, y, z axis are rep-
resented in red, green, blue respectively. (Only camera frame for bottom
camera is shown.)

16

3. Self-localization Pipeline

As stated in subsection 2.1.2.1, Kalman filter gives an optimal estimation of the current
state variable by combining prediction step and measurement update. To be more spe-
cific to the problem, prediction step will be referred as motion update and measurement
update as sensor update in the following text. In this thesis, odometry information from
motion module is used to perform the motion update. From odometry, the information
of how much distance the robot moved relative to the pose of last time stamp is provided,
thus an estimate of the current position can be established. Likewise, an estimate from
the sensor update is performed based on what the robot has observed, or in a nutshell,
the vision results from the vision module. In the end, Kalman filter updates the state
variable by a weighted average of the estimates. The behavior module then decides the
behavior of the robot by the given robot position. The illustration of the pipeline of the
localization process is shown in Figure 3.1.

The choice of motion model and observation model is fundamental and crucial for
both Kalman filter’s prediction step and measurement update. The more precise and
comprehensive the model describes the system, the more accurate the estimate of the
state will be.

Motion Module Vision Module

Motion
Update

Sensor
Update

Behavior Module

Odometry Vision Results

Robot Position

Robot Position

•

Localization Module

Figure 3.1: Self-localization pipeline.

3. Self-localization Pipeline

3.1. Motion Update

3.1.1. Motion Model

In general, motion models can be categorized by two models: velocity motion model
and odometry motion model. Practical experience suggests that odometry, while still
erroneous, is usually more accurate than velocity. Both suffer from drift and slippage, but
velocity additionally suffers from the mismatch between the actual motion controllers
and its mathematical model [13]. It is especially true for humanoid robot like NAO,
whose moving velocity is difficult to obtain.

Since the transformation between the coordinates used by the odometry measurement
and the physical world frame is unknown, the odometry measurement in this motion
model is relative. To be specific, in the time interval (t − 1, t], the robot moves from a
position xt−1 to position xt, and meanwhile the odometry reports us a related movement
from x̄t−1 = (x̄, ȳ, θ̄) to x̄t = (x̄′, ȳ′, θ̄′). The bar here indicates that these are odometry
measurements. We use the relative difference of x̄t−1 and x̄t as an estimation of the
difference between the true position xt−1 = (x, y, θ) and xt = (x′, y′, θ′). Therefore, the
odometry information ut can be given by the pair:

ut =

(
x̄t−1
x̄t

)
(3.1)

Let Equation 3.2 denotes the rotation matrix with angle α, which is the notation
assumed in the rest of the thesis.

Ω(α) =

[
cosα − sinα
sinα cosα

]
(3.2)

In this motion model, to obtain the relative odometry change, ut can be treated as a
translation and then followed by a rotation. Figure 3.2 demonstrates the decomposition
of the odometry measurement. δtrans is the translation and δrot is the rotation after
translation. Both the translation and the rotation are considered under the coordinate
O, which is relative to x̄t−1. The relative translation and rotation is calculated using
Algorithm 1.

Algorithm 1 subtract poses (x̄t−1, x̄t)

1:

[
δx
δy

]
= Ω(−θ̄)

[
x̄′ − x̄
ȳ′ − ȳ

]
2: δrot = θ̄′ − θ̄
3: return(δx, δy, δrot)

Once the estimated translation δtrans and rotation δrot relative to pose xt−1 is obtained,
it can be applied to update the robot position in the physical world frame. The full
motion update using odometry measurement is shown in Algorithm 2.

18

3.1. Motion Update

O x

y

δtrans

δy

δx

δrot

Figure 3.2: Relative odometry change. Translation δtrans, rotation δrot are considered in
coordinate system O.

Algorithm 2 odometry motion update(xt−1, ut)

1: (δx, δy, δrot) = substract poses(x̄t−1, x̄t)

2:

[
x′

y′

]
= Ω(θ) ·

[
δx
δy

]
+

[
x
y

]
3: θ′ = θ + θrot
4: return[x′, y′, θ′]>

The function odometry motion update in Algorithm 2 corresponds to the transition
function f(xt−1, ut) described in EKF algorithm in Table 2.2. Then the related Jacobian
matrix Ft can be calculated by:

Ft =

1 0 −sin(θ) · δx − cos(θ) · δy
0 1 cos(θ) · δx − sin(θ) · δy
0 0 1

 (3.3)

3.1.2. Process Noise Model

The process noise covariance matrix Qt is modeled to be directly proportional to the
absolute change of odometry (|δx|, |δy|, |θr|). Since the more the robot moves, the more
it suffers from unpredictable noises like slippage and drift. Equation 3.4 is proposed to

19

3. Self-localization Pipeline

calculate the process noise covariance matrix.

Qt =

|δx| 0 0
0 |δy| 0
0 0 |δrot|

 · Sc2 ·
|δx| 0 0

0 |δy| 0
0 0 |δrot|

> (3.4)

Sc =

0.8 0.2 0.2
0.2 0.8 0.2
0.2 0.2 0.8

 (3.5)

Sc is a scaling matrix and Sc2 is the element-wise square of Sc. The values chosen for
Sc was determined from a set of experiments by visual inspection. It intuitively means,
when the robot walks 1 m in x or y direction, it has an error range of ± 0.8 m. When it
rotates 1 rad, it has an error of ± 0.8 rad in orientation. The value of Sc depends on the
accuracy of odometry measurement from the motion module, and a better tuning of the
values can be argued.

With all the essential elements for motion model ready, we plug in the formula from
Table 2.2 and perform the EKF prediction step for the localization algorithm.

3.2. Sensor Update

The robot can also measure its position by sensing the surrounding environment. In
the case of NAO robot, the measurement is made by observing the environment from
its two cameras. The images from the cameras are preprocessed by the DAInamite’s
vision module to extract the landmarks as shown in Figure 2.2. During the work of this
thesis, two sensor update models are proposed to accomplish the localization task. One
is based on an optimization approach and another is based on features. We will discuss
both models in this section, but with more focus on feature based model.

3.2.1. Optimization Based Model

In the early phase of the thesis, the only unique landmark can be detected by vision
module is the yellow goal posts, however, from 2015 the yellow goal posts will be replaced
by white goal posts according to the rule [2]. Apart from yellow goal posts, the landmark
can be detected in team DAInamite is the white line in the field. Field lines are of high
ambiguity, in the case of feature based Kalman filter localization, a wrong matching of the
landmarks could lead to the divergence of the tracking which can hardly be recovered.
Thus, a robust and accurate algorithm for sensor update is implemented taking the
reference from Lauer [12]. The algorithm is based on Rprop [14] optimization method,
which uses only the line points from the detected lines, to find the robot position which
matches the field map best.

One of the challenges to design Kalman filter using optimization based model is to
define the covariance of the measurement model. Unlike a classic Kalman filter measure-
ment update step, the optimization based model uses Rprop to refine the target variable

20

3.2. Sensor Update

by an iterative error minimizing process, in which no covariance is considered. The idea
proposed in [12] is to use second order error derivative to approximate the value of co-
variance. However, without a consistent physical meaning of the covariance throughout
the system, the motion model and sensor model can not be stably combined. Another
challenge regarding this model is the intensive computation required by the optimization
step which is not applicable on the robot.

3.2.2. Feature Based Model

Although the optimization based localization have relatively the same accuracy as the
particle filter localization, it is not computationally efficient to run on the robot (com-
parison in section 5.3). During the preparation of German Open 2015, DAInamite team
developed more feature detections like center circle detection, penalty area detection and
“L” junction detection. Provided the richness of features, the development of feature
based sensor update for localization is motivated.

3.2.2.1. “T” and “X” Junction Detection

In the SPL soccer field, there are 36 “L” junctions, 14 “T” junctions, 2 “X” junctions.
As illustrated in Figure 3.3, the detection of “L” considers both sides of the field line
as well as the line direction, but “T”and “X” junctions do not consider line side and
direction. The counting includes “L”, “T”, “X” junctions at center circle. Compared to
“L” junction, “T” and “X” junctions are much stronger landmarks. Especially the “T”
junction at the penalty area, it can significantly help the robot localize itself in front of
the goal.

Both the “T” and “X” junctions are detected in the robot frame instead of the im-
age plane, since in the image plane the perpendicularity of the lines can not be easily
observed. When the detected lines are projected to the robot frame, every two lines
are compared according to their angles. If the differences of the angles are close to 90◦,
then the intersection point of the two lines are computed assuming the lines have infinite
length. After the intersection is calculated, it should be satisfied that the intersection lies
on at least one of the line segments. The distance from line end points to the intersec-
tion are further checked if they satisfy the threshold according to T or X geometry. The
pseudocode of the TX junction detection is illustrated in Algorithm 3, and the detection
result is shown in Figure 3.4.

3.2.2.2. Measurement Model Choice

Given the various kinds of features, different sensor models can be distinguished for
different features. In general, they can be divided into point landmarks and line land-
marks. Assume the robot position xt = (px, py, pθ), and the landmark represented as l
in physical world frame. The objective is to describe the expected measurement z̄ by
the observation function h(xt) and derive the Jacobian matrix H.

21

3. Self-localization Pipeline

Figure 3.3: All L junctions in the field, the blue pointer indicates the position of the “L”
junctions as well as their directions.

Point Landmark without orientation Under the Cartesian coordinate system in robot
frame. The expected point landmark can be described as z̄ = (z̄x, z̄y)

> (illustrated in
Figure 3.5, and regards the ball as a point landmark.) and its corresponding landmark
in physical world frame l = (lx, ly)

>. The observation function h(xt) can be described
in Equation 3.6, which transforms the landmark from physical world frame to the robot
frame. The Jacobian matrix H is the partial derivative of h(xt) at xt, as illustrated in
Equation 3.7.

z̄ =

(
z̄x
z̄y

)
= h(xt) = Ω(−pθ) ·

[(
lx
ly

)
−
(
px
py

)]
(3.6)

H =
∂h(xt)

∂xt
=

[
− cos pθ − sin pθ −(lx − px) sin pθ + (ly − py) cos pθ
sin pθ − cos pθ −(lx − px) cos pθ − (ly − py) sin pθ

]
(3.7)

The feature which follows this model is center circle without the center line being de-
tected.

Point Landmark with Orientation When the point landmark has not only position
but also orientation, it can be described as l = (lx, ly, lθ)

> in the physical world frame,

22

3.2. Sensor Update

Algorithm 3 TX junction detection ()

1: for each Line(i) do
2: for each Line(j) do
3: if AngleDifference(Line(i), Line(j)) ≈ 90◦ then
4: intersection← Intersection(Line(i), Line(j))
5: if intersection lies on both LineSegment(i) and LineSegment(j) then
6: if CheckDistance(LineEndPoints(i), LineEndPoints(j),
intersection) within ThresholdX then

7: LineSegment(i) and LineSegment(j) is an X junction
8: end if
9: else if intersection lies on either LineSegment(i) or LineSegment(j)

then
10: if CheckDistance(LineEndPoints(i), LineEndPoints(j),

intersection) within ThresholdT then
11: LineSegment(i) and LineSegment(j) is a T junction
12: end if
13: end if
14: end if
15: end for
16: end for

and the expected point landmark can be described as z̄ = (z̄x, z̄y, z̄θ)
>. With addition

of orientation, the observation function h(xt) can be described in Equation 3.8 and the
Jacobian matrix H in Equation 3.9.

z̄ =

z̄xz̄y
z̄θ

 = h(xt) =

Ω(−pθ) ·
[(
lx
ly

)
−
(
px
py

)]
lθ − pθ

 (3.8)

H =
∂h(xt)

∂xt
=

− cos pθ − sin pθ −(lx − px) sin pθ + (ly − py) cos pθ
sin pθ − cos pθ −(lx − px) cos pθ − (ly − py) sin pθ

0 0 −1

 (3.9)

The landmarks which comply with this measurement model are “L”,“T”,“X” junctions,
and center circle with center line detected.

Line Landmark Line is a special landmark, it needs two end points to describe it in
Cartesian space. However, with only two end points of the line, it is very hard to find the
corresponding points in the field map. For example, a short line can be matched to any
segment within a long line. Therefore, to counter this ambiguity and extract the intrinsic
property from lines, the representation from Hough transform is used where a line can
be represented as (ρ, θ), as shown in Figure 3.6. While Hough representation discards
the length information of the line, it keeps the direction and distance information from

23

3. Self-localization Pipeline

(a) “L”, “T” junction detection. (b) “X” junction detection.

Figure 3.4: Detection of “L”(Blue), “T”(Red) and “X”(Yellow) junctions in the field.
The purple ellipses indicate the measurement covariance. The orange point-
ers indicate the correspondent junctions on the field.

Figure 3.5: Observation given in Cartesian coordinates. [15]

the line intact. It means, for example, when a vertical line is matched, the robot’s
orientation can be determined and it will also be sure about its position in x axis, but
keep uncertain about its position in y axis until a horizontal line is matched.

Using Hough representation, the expected line landmark can be described as z̄ =

24

3.2. Sensor Update

x

y

Lineρ

θ

Figure 3.6: Line represented in Hough space.

(z̄ρ, z̄θ)
>, and depending on whether the corresponding line in the field map is vertical

or horizontal, different measurement models should be adjusted. If the matched line is
horizontal, the line landmark in physical world frame could be described using only y
axis value l = ly. Then the observation function h(xt) can be described in Equation 3.10
and the Jacobian matrix H in Equation 3.11.

z̄ =

(
z̄ρ
z̄θ

)
= h(xt) =

(
|ly − py|

atan2(cos pθ · (ly − py), sin pθ · (ly − py))

)
(3.10)

H =
∂h(xt)

∂xt
=

[
0

ly−py
|ly−py | 0

0 0 −1

]
(3.11)

Similarly for vertical lines, the line landmark in physical world frame can be described
using only x axis value l = lx. The observation function h(xt) can be described in Equa-
tion 3.12 and the Jacobian matrix H in Equation 3.13.

z̄ =

(
z̄ρ
z̄θ

)
= h(xt) =

(
|lx − px|

atan2(cos pθ · (lx − px),− sin pθ · (lx − px))

)
(3.12)

H =
∂h(xt)

∂xt
=

[
lx−px
|lx−px| 0 0

0 0 −1

]
(3.13)

The features that fall into this measurement model are the detected lines as well as
the penalty area. Because the penalty area detection basically is just the detection of
two parallel lines which satisfies certain criteria. The penalty area detection result is
given in the form of Hough representation, thus it is also treated as a line.

25

3. Self-localization Pipeline

3.2.2.3. Measurement Noise Model

The measurement noise indicates how accurate the measurement made for each feature
is, and by assuming the noise distribution is Gaussian, the measurement noise covariance
is represented by the term Rt in Table 2.2. The measurement noise in case of NAO robot
in SPL game mainly due to:

• noise of the camera matrix.

• blur of the image due to motion.

• discretization of the physical environment into the pixels of an image.

• distortion of the image due to rolling shutter of the camera.

While many kinds of noise listed above result from the hardware intrinsic of the camera,
to compensate these error, specific error models have to be developed for each kind.
In this thesis, we focus only on developing the noise model for noise from the camera
matrix.

Since all the landmarks are measured in robot frame, the further the landmarks from
the robot (the origin of robot frame coordinate) are, the larger the measurement noise
will be. Because, the error introduced by the camera matrix will be magnified when
the detected landmarks are projected from image plane to robot frame. Assuming in
2D situation and the camera matrix has an error of 0.02 radian in angle, the corre-
sponding measurement noise for a point landmark can be approximated in Figure 3.7.
This phenomenon is demonstrated in Figure 3.8 and 3.9. For example, the line (both
sides) which is being detected from the penalty area in Figure 3.8 become two lines with
big gap (shown in Figure 3.9) when projected to the robot frame. Both lines suffered
significant error in distance.

0 1 2 3 4 5 6 7 8 9
0

2

4

distance to landmark (m)

m
ea
su
re
m
en
t
n
o
is
e
(m

) Camera matrix angle error=0.02 radian

Figure 3.7: Measurement noise with respect to landmark distance in robot frame.

26

3.2. Sensor Update

Figure 3.8: Landmarks in image plane. Detected field border are indicated by a long
green line. Detected lines are indicated in black with starting point in blue
dot and end point in black dot. The red box indicates the parts which are
detected from the front line of the penalty area.

In this thesis, the noise model which is used by team B-Human is adopted [16]. The
basic idea of their noise model is illustrated in Figure 3.10. In Figure 3.10, a point
landmark without orientation is observed at location L in robot frame xOy. In this
model, it assumes the robot has certain angle noise deviation in camera matrix’s pitch
and yaw, namely θx and θy. By adding the angle noise deviations and re-projecting the
landmark onto the ground, the measurement noise indicated by the purple line LB and
LA can be calculated.

On the other hand, line landmark is represented as (ρ, θ) according to its measure-
ment model. Its corresponding measurement noise is calculated by taking the cen-
ter point of the detected line landmark and using it as a point landmark to calcu-
late the noise. The noise in x direction is regarded as the measurement noise for
ρ. Based on the assumption that the longer the detected line is, the more confi-
dence the robot will have for line angle θ, the measurement noise for θ is calculated
by atan(measurementNoise(ρ)/halfLineLength).

In the end, for point landmarks with orientation, the noise model of point landmark
mentioned above is firstly applied. Then the measurement noise in orientation can
be obtained by taking the line from the landmark which determines the landmark’s
orientation, and calculate its noise in angle using the noise model for line landmark.

27

3. Self-localization Pipeline

Figure 3.9: Landmarks in robot frame. Black lines indicate the detected lines after pro-
jection, the red box indicates the lines which are detected from the front line
of the penalty area.

3.2.2.4. Landmark Correspondence

Due to the high ambiguity of the features in SPL, one of the difficulties of using Kalman
filter for localization is to find the correspondence between the observations and the
landmarks. In other words, it is to find the corresponding landmark l in physical world
frame, when a landmark zt (in Equation 2.11) is observed in robot frame.

Center Circle The only unique landmark that currently can be used is the center circle
with center line detected. Its correspondence is easily fixed to l = (0, 0, 0), meaning
position (0, 0) in physical world coordinate and 0◦ in orientation. However, because the
center circle is symmetrical, it can not provide the information of the field side, so the
robot could be in either one position or its mirrored one. In this case, the side of the
current robot position is considered when using center circle to update robot position,
then the robot position can be uniquely defined. With the help of unique landmark like
center circle, the global localization problem stated in subsection 1.2.3 can be solved.

On the other hand, when the center circle is detected without the middle line, the
robot position can still not be decided, since it can be at any position surrounding the

28

3.2. Sensor Update

O
x

y

C

L A

θx

B

θy

Figure 3.10: Measurement covariance of the point landmark. θx and θy are the measure-
ment angle deviations in x, y direction. LA and LB indicate the measure-
ment noises.

center circle. So in this case, the center circle can only be treated as a point landmark
without orientation and its correspondence is l = (0, 0).

Junctions For junction features which include “L”, “T”, “X” junctions, they are am-
biguous features and the detected junctions are represented as point landmark with
orientation zt = (zx, zy, zθ). Within the junctions, “L” junctions are the most ambigu-
ous ones, with 36 appearances in the field (illustrated in Figure 3.3). It means one
detected “L” junction can be matched to 36 “L” junctions in the field. “T”, “X” junc-
tions are less pervasive, with 14 and 2 appearances respectively. Given the ubiquitous
distribution of the junctions in the field, it is hard to find the correspondence between
the junctions seen and the junctions in the field.

In this thesis, a nearest neighbor search method with threshold is used to find the
junction correspondences. Assume the robot position is not of high inaccuracy, then we
transform the junctions from robot frame into physical world frame. Given the junction
in physical world frame, the associative correspondence is found by searching the nearest
junction in the field.

Instead of looping through all the possible junctions, the k-d tree algorithm [17] is
adopted to do the search efficiently. Two k-d trees are constructed, one for “L” junctions
and one for “T” junctions. No k-d tree is needed for “X” junction, since the “X” junctions
can be compared directly with the two in the field. The distance of measurements

29

3. Self-localization Pipeline

between the junctions is Euclidean distance.

Once the associative junction is found by nearest distance, the distance and the differ-
ence in orientation are checked. If the distance to the associative junction is larger than
a threshold1, or the difference in orientation is exceeding 45◦, the associative junction is
discarded and this landmark will not contribute to the robot position update. Because
in this case, the assumption that current robot position is relatively accurate no longer
holds, more than one possible correspondences can be chosen. In other words, nearest
neighbor search with threshold acts more like a local position optimization to track the
robot pose rather than global localization. In section 4.2, we will see the discarded land-
marks can be utilized for global localization by using multi-hypotheses Kalman filter.
The matching result has been shown above in Figure 3.4, in which the orange pointer
indicates to which junction the detected junction is corresponding.

Lines Lines are the most ambiguous landmarks among all the landmarks in the field,
because a single line can be matched to any field line in the field. Due to the high ambi-
guity, the lines also can not be used for global localization if features are not extracted
from them. To find the line correspondence, a similar methodology as the nearest neigh-
bor search is adopted. Each detected line is represented by a vector of two end points
zt = (Pstart, Pend). If the nearest neighbor search is directly applied, the two end points
could be erroneously matched to two different field lines, as illustrated in Figure 3.11.

Pstart

Pend

Figure 3.11: The end points of the detected line (black) would be matched to two dif-
ferent field lines using nearest neighbor search, which is not the desired
result.

Inspired by the method used by B-Human [16] to find line correspondence, a nearest
line neighbor search is implemented. Given a detected line, after projecting it to physical
world frame, it is compared with each of the field lines to check if certain criteria are
satisfied. Suppose we start with the outer side of the horizontal field line (indicated by
red in Figure 3.12), the criteria are as follows:

1The threshold depends on which associative junction on the field is matched. For example, the
junctions from the side lines will have larger threshold than the ones from the center circle.

30

3.2. Sensor Update

• Find the nearest distance from the end points of detected line to the field line,
in this case, distance PstartA and PendB are checked. They should be below a
threshold2 respectively, otherwise, this field line is not the correspondence.

• Start from each end point of the detected line, make a perpendicular line pointing
to the field line, i.e. line PstartC and PendD. If both perpendicular lines have
intersections with the field line, the distance of PstartC and PendD are checked.
Each of them should also be below the threshold. Moreover, if either orthogonal
line starting from the end point fails to have an intersection with the field line.
This field line is regarded as not the correspondence. (For example, Pstart fails to
have an orthogonal intersection with the vertical field line in Figure 3.12)

• When both of the criteria above are satisfied, the direction of the detected line is
checked with the field line. They should have more or less the same direction. And
this is done by dot multiplication of the two vectors, the one with result larger
than 0 satisfies.

• Only the field line which satisfies all the criteria above is treated as the correspon-
dence. If more than one field line happen to satisfy the criteria, then all of them
are discarded due to the ambiguity.

d1

A

d2

Bd3

C

d4

D

Pstart

Pend

Figure 3.12: The criteria of determining the line correspondence.

Another important property of finding correspondence of the lines is that short lines
can match to long lines and short lines, but long lines can not match to short lines.
Thus, the long lines and short lines are distinguished, the lines with length exceeding
the penalty area width (defined in Table 1.1) are treated as long lines, the rest are short
lines. With this classification, long lines are limited to the four field lines on the border
and the one field line in the center. The benefit is discernible, not only the process of
nearest line neighbor search can be speeded up for long lines, but also the threshold in
the matching criteria can be enlarged, since the ambiguity is reduced.

2The threshold is chosen to be half of the penalty area length defined in Table 1.1, since it is the
largest distance that can distinguish the ambiguity between lines.

31

3. Self-localization Pipeline

While each line detected from a vertical or horizontal field lines can have a correspon-
dence, the lines detected from the center circle can hardly have. The center circle can
be treated as consisting of infinite short lines, and each line can be of different length.
The algorithm implemented checks if a short line is in the vicinity of the center circle,
if so, the line is simply discarded. Therefore, in this case, localization depends more on
center circle detection.

Penalty Area As we discussed earlier in section 3.2.2.2, detected penalty area can be
regarded as a line. We can assume on the field, there is a virtual line which is vertical
and goes through the center of each penalty area box. Then the problem becomes the
matching of the penalty area with the virtual lines. Unlike the nearest line neighbor
search for lines, the penalty area matching criterion is simpler. Since there are only
two penalty area virtual lines in the field, the nearest distance from the center of the
detected penalty area to both virtual lines are calculated. The virtual line with shorter
distance becomes the correspondence. The matching result for both detected lines and
penalty area is illustrated in Figure 3.13.

3.2.2.5. Multiple Simultaneous Measurements

In practical implementation of the Kalman filter, the routine of one motion update and
one sensor update described in theory may not hold. Instead, there can be multiple
motion updates without sensor updates, if no result is obtained from the observation.
Or on other cases, several observations are made at once, since several landmarks are ex-
tracted in the same time step. Assuming the landmarks extracted from the observations
are all point landmarks without orientation, according to the measurement noise model
discussed in subsection 3.2.2.3, the measurement noise covariance can be represented as
a 2-dimensional matrix in Equation 3.14

R =

[
r2x 0
0 r2y

]
(3.14)

The stochastically correct sensor update for n detected landmarks is to execute a 2n-
dimensional measurement update. However, when the landmarks are stochastically in-
dependent of each other, the off-diagonal inter-landmarks entries of the 2n × 2n mea-
surement covariance are zero. Then a single 2n-dimensional measurement update is
approximated well by n 2-dimensional updates [15]. Although, the assumption of the
observed landmarks are independent of each other is not completely true in SPL game,
in this thesis, the sensor update is performed independently for each observed land-
mark. As a result, it sacrifices the localization accuracy as a trade-off to increase the
computation efficiency.

32

3.2. Sensor Update

Figure 3.13: Matching result of line and penalty area. The black box indicates the
detected penalty area. The line in blue indicates it is matched with the
field line in red. The line in black indicates it fails to find a correspondence.

33

3. Self-localization Pipeline

34

4. Multi-Hypotheses Kalman Filter

While the Kalman filter can only deal with uni-modal probability distribution, it does
not suffice to handle the ambiguous landmarks that occur in robot’s observation, which
requires a multi-modal distribution. Therefore, a multi-hypotheses Kalman filter is
adopted to handle the ambiguous situations by describing the robot position in the field
by a Gaussian sum distribution. The problem of multi-hypotheses Kalman filter lies
mainly in the domain of when and where to add new hypothesises into the Gaussian
sum distribution, as well as when to prune or merge certain hypotheses to restrain the
number of hypotheses within a limit, so it does not consume too much of the computation
resources.

4.1. Hypothesis Model Weighting

As illustrated in subsection 2.1.2.3, each normal probability distribution from the Gaus-
sian sum distribution is represented as Equation 2.14. In addition to uni-modal Gaussian
distribution, the weight αi has to be determined for each Gaussian distribution model i
in the Gaussian sum distribution. The weight, at the same time, illustrates the quality
of the state hypothesis. Possible update method like Equation 2.16 has been proposed
in [8]. However, this update method is only suitable for landmarks with known corre-
spondence. If the correspondence is unknown or ambiguous, like in our case, the “T”
junctions, the expected observation ẑi can not be determined.

In this thesis, a voting buffer is used to measure the weight of each model. The voting
buffer is constructed by a First In, First Out (FIFO) circular buffer of size 60. The
basic idea is to vote 1 to the buffer when the observed landmark is matched, and 0 when
not matched. The matching of landmark correspondence is using the nearest neighbor
algorithm with threshold discussed in subsection 3.2.2.4. The advantage of using a
circular buffer is that, after 60 observed landmarks, regardless matched or not, the old
voting in the buffer will be flushed and will not be counted. In other words, it tries to
approximate the current robot state by keeping the memory of the most recent history.
The model weight is determined by the average value of the voting buffer. Therefore,
the more matches with landmarks the Kalman model makes, the higher weight it will
have.

Unlike the implementation of particle filter that the total number of particles are fixed,
in multi-hypothesis Kalman filters, the number of hypothesis model is dynamic. The
adjustment made here is that the weights of all the Gaussian models do not add up to

4. Multi-Hypotheses Kalman Filter

1, instead they behave independently. So the weights of the existing hypothesis models
will not be affected by the newly generated ones.

As discussed in subsection 3.2.2.4, some landmarks are unique landmarks, i.e. center
circle, and some are ambiguous landmarks, i.e. junctions and lines. To depict the
quality of the robot localization state, the vote should depend only on the globally
unique landmarks instead of ambiguous landmarks. Assume a scenario, where the robot
is not moving and constantly observing a “T” junction, and the “T” junction is perfectly
matched with its nearest neighbor in the field. In this case, the state of the robot position
is local optimal. The weight of the model will keep increasing and reach 1, but this weight
is not truly describing the quality of localization state in global.

To better express the localization state globally, in the localization algorithm, land-
marks are classified differently to update the weight. In observation, center circle
with/without orientation and penalty area are treated as unique landmarks, they can di-
rectly vote 1 to the voting buffer when the threshold requirement in the nearest neighbor
algorithm is satisfied, or vice versa.

On the other hand, “L”, “T”, “X”junctions are classified as non-unique landmarks,
the voting buffer can be voted by 1, only when at least two junctions are matched, and
in addition they must each belong to different junctions in the field. The junctions under
consideration do not distinguish “L”, “T” or “X”, and they can come from different ob-
servation frames, as long as there is no failure match (beyond threshold) in between. By
using the combination of the different observations of junctions, we assume it represents
a global unique landmark, thus helping to overcome the local optimal problem. While
the requirement of voting positive using junctions is strict, the condition of voting 0 is
the same as the unique landmarks, i.e. when a failure match happens for the junction,
a 0 will be voted to the buffer.

For the observed line landmarks, they are currently not contributing to the voting
buffer. To utilize the lines, certain feature structures need to be extracted from them,
in order to use the same strategy above to update the voting buffer. However, the
extraction of other features out of the lines is not an easy task, further work may be
required in this regard in the future.

4.2. Landmark Based Resampling

Similar to the augmented particle filter’s [13] sensor reseting step to recover the situation
of robot getting kidnapped, multi-hypotheses Kalman filter uses sensor reseting based
on landmarks to recover from position tracking failure. Assume uni-modal Kalman filter
for position tracking, the filter can lose track of the robot’s position when the robot
is hit by another robot which results in an error in robot’s orientation; or the robot
is kidnapped by a referee during manual replacement, etc. Augmented particle filter
initiates the sensor resetting step to generate random particles when the fluctuation of
the weights from the particles is high, multi-hypotheses Kalman filter designed in this
thesis will start resampling when an observed landmark fails to match the one on the
field. Here, a correspondence match failure is regarded as a signal for potential loss of

36

4.2. Landmark Based Resampling

position tracking.
The resampling is achieved by calculating all the possible poses of the robot with

respect to the observation of the landmark. The landmarks which can trigger resampling
are the landmarks with orientation, i.e. center circle with center line and all kinds of
junctions. The landmarks without orientation like lines, center circle without center
line and penalty area can generate infinite possible robot positions, therefore currently
they are not used for resampling. The problem of calculating the possible poses can be
formulated as follows:

Given an observed landmark lR = (xR, yR, θR) in robot frame, and assume its corre-
spondent landmark lG = (xG, yG, θG) in physical world frame, the corresponding robot
pose in physical world frame is what is needed to be calculated. The calculation concerns
mainly with the coordinate frame transformation which can be described by homoge-
neous transform matrix.

A homogeneous transform matrix in our context is a 3× 3 matrix. It is structured by
a 2× 2 rotation matrix RAB and a 2× 1 translation matrix PAB denoted in Equation 4.1.

TAB =

[
RAB PAB
0 1

]
(4.1)

The sub and super-script in RAB indicate that it is the rotation of frame B relative
to frame A. Translation matrix PAB denotes the translation of the origin of frame B
in frame A. In the following equations, we represent the robot pose in physical world
frame in the form of homogeneous transform matrix as TGR , landmark in robot frame
as TRL , landmark in physical world frame as TGL . According to Composition Rule for
Homogeneous Transformations, the transformation between TGR , TRL and TGL can be
described in Equation 4.2.

TGR · TRL = TGL (4.2)

To obtain TGR , we multiply (TRL)−1 from the right for both side of the equation, then
obtain Equation 4.3.

TGR = TGL · (TRL)−1 (4.3)

Substituting the homogeneous transform matrix using Equation 4.1, and calculating
the inverse of matrix, results in the following:

TGR =

[
RGL PGL
0 1

]
·
[
(RRL)> −(RRL)>PRL

0 1

]
(4.4)

TGR =

[
RGL (RRL)> −RGL (RRL)>PRL + PGL

0 1

]
(4.5)

By using the rotation matrix representation stated in Equation 3.2, the rotation matrix
and translation matrix in TGR is calculated in Equation 4.6 and Equation 4.7.

RGR = RGL (RRL)> = Ω(θG − θL) (4.6)

37

4. Multi-Hypotheses Kalman Filter

PGR = −RGRPRL + PGL = −Ω(θG − θL) ·
[
xR
yR

]
+

[
xG
yG

]
(4.7)

Therefore, given the correspondence of lR and lG, the robot x-y position is PGR and
orientation is θG − θL. The number of possible robot poses generated depends on the
occurrence of the landmarks in the field. For example, a mismatch of a “T” junction
would trigger resampling which would generate 14 possible robot poses. The weight for
the newly generated hypothesis model is 1 divided by the number of occurrences of the
landmarks in the field. So, in the case for resampling by “T” junction, the weight for
the new hypothesis model is 1/14 = 0.0714. However, the model resampled by center
circle is an execution as only one model will be generated. The weight of this model will
be directly proportional to the detection confidence of the center circle.

4.2.1. “L” Junction Look Up Table

A special case worths discussing is the observation of the “L” junctions, as there are
36 occurrences of “L” junctions in the field, a match failure can resample as much as
36 possible robot positions, the weight for the newly generated hypothesis model will
be 1/36 = 0.027 which is extremely low. Such low weight model can be easily pruned
in the pruning step which we will discuss in section 4.4. However, due to the large
number of occurrences of “L” junctions, the possibility of observing more than one
“L” junctions at the same frame is also high. When more than one “L” junctions are
observed in one frame, the number of possible positions can also be reduced. Given
the “L” junctions observed, the implementation to generate possible positions due to
multiple “L” junctions is described in the following steps:

1. Take one observed “L” junction, use Equation 4.6 and Equation 4.7 to generate
36 possible robot positions based on all the “L” junctions in the field.

2. Take another observed “L” junction, at each robot position generated in Step 1,
project the “L” junction to the physical world frame.

3. Check if at the place where the observed “L” junction is projected, there exists an
“L” junction in the field. If so, this generated robot position is valid, otherwise it
is an invalid position.

4. If there are remaining “L” junctions in observation, steps from Step 2 are repeated.
Otherwise, the possible robot positions which are valid are returned.

To speed up the computation, Step 3 above is implemented using a pre-computed look
up table. Given a pose (xl, yl, θl) of the “L” junction in physical world frame, the look up
table will return boolean value, i.e. true or false, depending on whether in the vicinity
of pose (xl, yl, θl), there exists an “L” junction. Although it is a 3-dimensional look up
table, the resolution can be configured coarse, so it will not consume too much memory.
In return, the checking of 36 “L” junctions in physical world frame can be done together

38

4.3. Best Hypothesis Model and Confidence

Figure 4.1: “L” junction look up table with angle dimension at 90◦. Bright parts indicate
true, dark parts indicate false

at once. A visualization example of the look up table is illustrated in Figure 4.1. Since
it is a 3-dimensional look up table, Figure 4.1 only shows the look up table when the
angle dimension is at 90◦. It means, if given an “L” junction in physical world frame
with angle being 90◦, only the “L” junctions which fall into the bright area is valid.

To further reduce the number of sampled positions by “L” junction, we retain only
the positions which are close enough to the last robot position. With the filtering of the
positions generated by “L” junctions, the weight of the sampled position is set to be the
same as the ones generated by “T” junctions.

4.3. Best Hypothesis Model and Confidence

In multi-hypothesis Kalman filter, there are multiple hypothesis models to form the
possibility distribution. From the robot position probability distribution, one position
(xr(t), yr(t), θr(t)) has to be determined as the end result of localization algorithm. In
the algorithm designed, the position is chosen to be the mean of the “best” hypothesis
model in the probability distribution. The “best” hypothesis model should satisfy the
following two criteria:

• Firstly, the hypothesis model should be globally best, which can be indicated by
the weight of the model, the one with the highest weight is believed to be globally
the best.

39

4. Multi-Hypotheses Kalman Filter

• Secondly, when multiple models have the same weights, then the quality of local
belief is compared which can be indicated by the covariance of the Gaussian model.
The one with the lowest covariance is believed to be the best.

Covariance describes the confidence of the belief of the current Gaussian model. To
compare the covariance value between the models, it is re-structured as Cov in Equa-
tion 4.8. Cov is the sum of the diagonal elements of the covariance matrix. Since
the error in orientation can cause more negative influence on robot position, i.e. the
larger the error in orientation, the further the projected observed landmark will be away
from its global correspondence, thus harder to match. Therefore, the variance value for
orientation is doubled to have a higher weight in comparison.

Cov = Covx + Covy + 2 ∗ Covθ (4.8)

When the “best” model is chosen, its covariance is also set to be the covariance of the
robot position, and the weight is set to be the confidence for the position.

4.4. Model Pruning

While the resampling step generates hypothesis models into the Gaussian sum distribu-
tion, pruning step is also necessary to remove the hypothesis models which are redundant
or have little contribution to the whole distribution.

4.4.1. Pruning by Weight

When the weight of hypothesis model is lower than a certain threshold, this model is
considered to have little contribution to the distribution, so that it can be removed.
Moreover, the maximum number of models is limited to a number N set by the local-
ization algorithm. Once the maximum number of models is exceeded, the models are
sorted by weight from high to low in a list. Only first N models in the list will remain,
the others will be deleted. In this thesis, the maximum number of models is set to be
16.

4.4.2. Merging by Mahalanobis Distance

When the hypothesis models are close enough to each other, in other words, they repre-
sent almost the same probability distribution, they could also be merged into one. One
way is to apply Euclidean distance directly between the mean of the models to calculate
the distance as shown in Equation 4.9. µ1 and µ2 represent the mean of two different
Gaussian distributions.

Deuclidean =
√

(µ1 − µ2)T (µ1 − µ2) =
√

(x1 − x2)2 + (y1 − y2)2 + (θ1 − θ2)2 (4.9)

40

4.4. Model Pruning

However, the drawback of using Euclidean distance is that the covariance information
of the distribution is not utilized. In this thesis, an adapted version of Mahalanobis dis-
tance is proposed to measure the distance between two hypothesis models. Mahalanobis
distance is defined as follows in Equation 4.10 [18], which uses covariance as one factor
to calculate the distance. In Equation 4.10, x is the observation, µ is the mean of the
distribution and S is the covariance matrix.

DM (x) =
√

(x− µ)TS−1(x− µ) (4.10)

Given two Gaussian distributions G1 and G2, where G1 has mean and covariance
(µ1, S1) and G2 has mean and covariance (µ2, S2), the formula in Equation 4.10 can not
be directly applied to measure the distance. In order to measure the distance between G1

and G2, assume µ2 is the observation for G1, and µ1 is the observation for G2, therefore,
by combining two Mahalanobis distances, the adapted Mahalanobis distance to measure
distance between two Gaussian hypothesis models is defined as following:

Dmahalanobis =

√
((µ2 − µ1)TS−11 (µ2 − µ1) + (µ1 − µ2)TS−12 (µ1 − µ2)) · 0.5 (4.11)

An example is illustrated in Figure 4.2, where the Gaussian distribution in blue has
mean µ = −3.0, deviation δ = 0.2, and the Gaussian distribution in green has mean
µ = −2.5, deviation δ = 2.0. Although the Euclidean distance between the mean of
the two Gaussian distributions are close (Deuclidean = 0.5), the Mahalanobis distance
is relatively larger (Dmahalanobis = 1.77) due to the significant difference between their
deviations. As a result, Mahalanobis distance is more suitable for describing the model
distance than Euclidean distance.

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.5

1

1.5

2

x

G
a
u
ss
ia
n
d
is
tr
ib
u
ti
on

f
(x
,µ
,δ
)

µ=-3.0, δ =0.2
µ=-2.5, δ =2.0

Figure 4.2: Visualization of two Gaussian distributions

To prune hypothesis models, the Mahalanobis distance is calculated between each pair
of the models. If the Mahalanobis distance is under certain threshold, the two models

41

4. Multi-Hypotheses Kalman Filter

are considered to be close to each other, and the one with lower weight will be removed.
If both weights are the same, the model with higher covariance will be removed.

4.4.3. Pruning by Distance to Best Model

As we discussed in section 4.3, the model whichever is the “best” is chosen to represent
the robot position. To further prune hypothesis models, the models which are very close
to the “best” model are also removed. This distance is measured by Euclidean distance
and the threshold is set to be a small value 2 cm. It means the error of maximum 2 cm
in robot position is tolerated by the localization algorithm.

42

5. Analysis and Benchmark

In this thesis, two localization algorithms are implemented, namely optimization based
localization and multi-hypotheses Kalman filter localization. Optimization based local-
ization and multi-hypotheses Kalman filter localization share the same motion update
model discussed in section 3.1, but different sensor update models discussed in sec-
tion 3.2. As the name already indicates, optimization based localization uses the opti-
mization based sensor model, while multi-hypotheses Kalman filter localization adopts
the feature based sensor model. Moreover, multi-hypotheses Kalman filter is only en-
abled for the latter, because the resampling step discussed in section 4.2 depends highly
on landmarks, which optimization based localization do not have during the time of its
implementation. In this chapter, the two localization algorithms will be analyzed and
benchmarked along with the particle filter localization algorithm from team DAInamite.

5.1. Experiments Setup

5.1.1. Ground Truth

To assess the quality of the localization algorithm, the true position of the robot needed
to be obtained in order to do the comparisons and benchmarks with the position cal-
culated by the algorithm. The true position of the robot or the so called ground truth
can not be obtained from the robot itself, since it does not have built in GPS or other
position tracking sensors. Moreover, the accuracy within centimeters is required for this
purpose.

The approach adopted in this thesis is SSL-Vision [19], the vision system used in
RoboCup Small Size League to obtain the position of the robots. SSL-Vision requires
a camera mounted on the ceiling, and a marker with specific pattern on top of the
robot. By detecting the marker and the field through the ceiling camera, the ground
truth can be obtained. For NAO robot, since its head could be scanning left and right,
the marker can not be directly attached on its head, otherwise the robot’s orientation
obtained is not correct. To counter this, a plastic support is printed using a 3D printer.
As illustrated by Figure 5.1, the support is worn by the robot from the back, and the
marker is attached on the top of the support.

In the SSL-Vision software [20], first set the field size, robot height, camera height
and the corners of the field to calibrate the camera, so a point in the image plane can
be mapped to the coordinate of the physical world frame. Then the colors in the field
and the colors from the marker have to also be calibrated. Shown in Figure 5.2a is the

5. Analysis and Benchmark

Figure 5.1: The 3D printed support and the pattern marker.

visualization result after calibration. When the marker is detected by SSL-Vision, the
coordinate of the robot position in global frame will be broadcasted via network. The
detected robot position is drawn in the field GUI in Figure 5.2b.

(a) Calibration result. (b) Position in field.

Figure 5.2: SSL-Vision color and camera calibration result (a), robot position result (b).

Advantages of SSL-Vision

44

5.2. Code Optimization

• Low-cost hardware for setting up SSL-Vision.

• Open-source project with manual and support from community.

• Able to achieve a position accuracy of better than 15 mm in RoboCup Small Size
League [21].

Disadvantages of SSL-Vision

• The system highly depends on the light of the environment, once the surrounding
light changes, the color metrics need to be recalibrated.

• If the marker is printed using normal paper, it may cause reflection at certain
angles from the view point of the camera, then the pattern can not be detected.
For this reason, fuzzy materials are specially chosen to manually create the marker.

• The system can not detect the pattern when the robot has fallen down.

5.1.2. Perception Log

For the purpose of debugging and benchmarks, the robot can store the perception as logs
for future replay. The log contains the necessary data needed to re-run the localization
algorithm on another computer. The log includes vision results, odometry, IMU, sonar
data, time stamp, robot posture, etc. In order to benchmark the quality of the localiza-
tion algorithm result, the ground truth data has to be stored as well, and when the log
is replayed, the ground truth data should be synchronized with the perception log. The
solution for this is to store the broadcasted ground truth from SSL-Vision at the same
time of recording the perception, and consequently the ground truth becomes part of
the perception log. The replayed perception log with ground truth is already illustrated
in Figure 3.9, in which the ground truth position is indicated by red, calculated position
in blue, mirrored calculated position in green.

5.2. Code Optimization

As illustrated in subsection 1.2.1, the motherboard that the robot equips is an em-
bedded platform with only limited computational power. This requires the localization
algorithms developed to be computationally efficient in order to run in real time in SPL
game. In this section, the methods used to enhance the performance of the two localiza-
tion algorithms, namely optimization based localization and multi-hypotheses Kalman
filter localization, will be discussed.

By the intrinsics of the Rprop algorithm, optimization based localization imposes
significant overhead in computation. On the one hand, it uses all the detected line
points instead of line segments to calculate the measurement error, on the other hand,
the optimization procedure takes several iterations to converge to the optimal result.
Although the error function being used by Rprop has been implemented by an error
look up table and an error gradient look up table, which saves the on-line computation

45

5. Analysis and Benchmark

time by pre-calculating the error and error gradient off-line, the computation time is
still high. Initially the implementation is using the combination of python and Numpy.
After optimizing the computation heavy part using Cython and reducing the number
of optimization iterations, the computation speed has increased by 84%. However, with
this speed up after optimization, it is still almost 3 times slower than the implementation
of particle filter as illustrated in Table 5.3, which is far from acceptable to run on the
robot.

The major drawback pertains to the optimization based localization is that when the
size of look up table is big, the requests to the look up table can often cause CPU
cache misses if the data requested in memory is not contiguous. Since the line points
in observation are often scattered over the field, and the look up table is constructed
row by row along the field, a request to the look up table by these line points will
often result in the penalty of cache misses. Moreover, two look up tables have to be
requested repeatedly for several iterations during the optimization step, which magnifies
the overhead.

Taking the experience during implementing optimization based localization, the prin-
ciple is to implement the computational heavy part using lower level programming lan-
guage to gain performance and the other parts in higher level language to have design
flexibility. For multi-hypotheses Kalman filter, the code pertaining to motion update and
sensor update are implemented in C++. The other parts of code regarding observation
pre-processing and feature detection are implemented using the combination of python,
Numpy and Cython. The interface between C++ code and python code is bridged by
Cython. The performance of this design turns out to be satisfactory. As illustrated in
Table 5.3, it is 22.61% faster than the speed of particle filter.

5.3. Benchmarks

To benchmark the quality of localization algorithms, we use the same perception log with
ground truth throughout this section as the input for the different algorithms. The log
consists of 3226 perception frames and is recorded when the robot is initially placed at
the side of the field and walks into the goalie position. In the end, the robot is kidnapped
to a position near the center circle1. The quality of the localization algorithm is judged
by the following criteria:

1. Initial global localization.

2. Accuracy of robot position tracking.

3. Recovery from tracking failure or kidnap.

4. Efficiency of algorithm.

Three localization algorithms are compared, namely, particle filter, optimization based
localization, multi-hypotheses Kalman filter localization.

1The kidnapping happens at around frame 2900 of the log, where a robot position “jump” is illus-
trated by the ground truth trajectory in Figure 5.3

46

5.3. Benchmarks

5.3.1. Accuracy

As illustrated in Figure 5.3, 5.4 and 5.5, firstly, the resulting robot position trajectory
for each algorithm is compared with the ground truth trajectory. In addition to trajecto-
ries, which only give a general impression of the quality of the corresponding localization
method, the error is quantitatively measured for each dimension of the position x, y,
θ respectively. Figure 5.6, 5.7 and 5.8 show the particle filter localization result at
each time frame, as well as its corresponding error with the ground truth. Similarly
for optimization based localization and multi-hypotheses Kalman filter localization, the
results and errors are shown in Figure 5.9, 5.10, 5.11 and Figure 5.12, 5.13, 5.14 respec-
tively. The average error and standard deviation for each localization algorithm result
are shown in Table 5.1 and 5.2. Average error and standard deviation are calculated for
each dimension of the robot position x, y, θ.

Figure 5.3: Particle filter localization trajectory (blue) compared with ground truth tra-
jectory (green).

From Table 5.1 and 5.2, we can see that multi-hypotheses Kalman filter out-performs
the other localization algorithms in term of accuracy, but particle filter has less standard
deviation in x and y dimension compared to multi-hypotheses Kalman filter. Optimiza-
tion based localization tracks the robot position with high accuracy at the beginning,
but diverges into a wrong localization when the robot get kidnapped, which results in
its large average error in the end. By comparing Figure 5.3 and 5.5, another benefit of
Kalman filter based localization is that the trajectory of the position is more smooth
than the one from particle filter.

47

5. Analysis and Benchmark

Figure 5.4: Optimization based localization trajectory (blue) compared with ground
truth trajectory (green).

Figure 5.5: Multi-hypotheses Kalman filter localization trajectory (blue) compared with
ground truth trajectory (green).

48

5.3. Benchmarks

0 500 1,000 1,500 2,000 2,500 3,000 3,500
1

2

3

4

time (s)

x
(m

)

localization result in x dimension compared with ground truth.

Localization
Ground truth

0 500 1,000 1,500 2,000 2,500 3,000 3,500
0

0.5

1

1.5

time (s)

x
er
ro
r(
m
)

Error in localization x dimension.

Figure 5.6: Particle filter localization result and error in θ dimension.

49

5. Analysis and Benchmark

0 500 1,000 1,500 2,000 2,500 3,000 3,500
−4

−2

0

2

time (s)

y
(m

)

localization result in y dimension compared with ground truth.

Localization
Ground truth

0 500 1,000 1,500 2,000 2,500 3,000 3,500
0

0.5

1

1.5

time (s)

y
er
ro
r(
m
)

Error in localization y dimension.

Figure 5.7: Particle filter localization result and error in θ dimension.

50

5.3. Benchmarks

0 500 1,000 1,500 2,000 2,500 3,000 3,500
−4

−2

0

2

4

time (s)

θ(
ra
d
ia
n
s)

localization result in θ dimension compared with ground truth.

Localization
Ground truth

0 500 1,000 1,500 2,000 2,500 3,000 3,500
0

0.5

1

1.5

2

2.5

time (s)

θ
er
ro
r(
ra
d
ia
n
s)

Error in localization θ dimension.

Figure 5.8: Particle filter localization result and error in θ dimension.

51

5. Analysis and Benchmark

0 500 1,000 1,500 2,000 2,500 3,000 3,500
1

2

3

4

time (s)

x
(m

)

localization result in x dimension compared with ground truth.

Localization
Ground truth

0 500 1,000 1,500 2,000 2,500 3,000 3,500
0

0.5

1

1.5

time (s)

x
er
ro
r(
m
)

Error in localization x dimension.

Figure 5.9: Optimization based localization result and error in x dimension.

52

5.3. Benchmarks

0 500 1,000 1,500 2,000 2,500 3,000 3,500
−4

−2

0

2

4

time (s)

y
(m

)

localization result in y dimension compared with ground truth.

Localization
Ground truth

0 500 1,000 1,500 2,000 2,500 3,000 3,500
0

1

2

3

4

time (s)

y
er
ro
r(
m
)

Error in localization y dimension.

Figure 5.10: Optimization based localization result and error in y dimension.

53

5. Analysis and Benchmark

0 500 1,000 1,500 2,000 2,500 3,000 3,500
−4

−2

0

2

4

time (s)

θ(
ra
d
ia
n
s)

localization result in θ dimension compared with ground truth.

Localization
Ground truth

0 500 1,000 1,500 2,000 2,500 3,000 3,500
0

1

2

3

time (s)

θ
er
ro
r(
ra
d
ia
n
s)

Error in localization θ dimension.

Figure 5.11: Optimization based localization result and error in θ dimension.

54

5.3. Benchmarks

0 500 1,000 1,500 2,000 2,500 3,000 3,500
1

2

3

4

time (s)

x
(m

)

localization result in x dimension compared with ground truth.

Localization
Ground truth

0 500 1,000 1,500 2,000 2,500 3,000 3,500
0

0.5

1

1.5

2

time (s)

x
er
ro
r(
m
)

Error in localization x dimension.

Figure 5.12: Multi-hypotheses Kalman filter localization result and error in x dimension.

55

5. Analysis and Benchmark

0 500 1,000 1,500 2,000 2,500 3,000 3,500
−4

−2

0

2

time (s)

y
(m

)

localization result in y dimension compared with ground truth.

Localization
Ground truth

0 500 1,000 1,500 2,000 2,500 3,000 3,500
0

0.5

1

1.5

2

2.5

time (s)

y
er
ro
r(
m
)

Error in localization y dimension.

Figure 5.13: Multi-hypotheses Kalman filter localization result and error in y dimension.

56

5.3. Benchmarks

0 500 1,000 1,500 2,000 2,500 3,000 3,500
−4

−2

0

2

4

time (s)

θ(
ra
d
ia
n
s)

localization result in θ dimension compared with ground truth.

Localization
Ground truth

0 500 1,000 1,500 2,000 2,500 3,000 3,500
0

0.5

1

1.5

time (s)

θ
er
ro
r(
ra
d
ia
n
s)

Error in localization θ dimension.

Figure 5.14: Multi-hypotheses Kalman filter localization result and error in θ dimension.

57

5. Analysis and Benchmark

Average error x (m) y (m) θ (rad)

Particle filter 0.363 0.323 0.296

Optimization based 0.366 0.534 0.604

Multi-hypotheses Kalman filter 0.331 0.255 0.225

Table 5.1: Accuracy comparison between different localization algorithm results

Standard deviation x (m) y (m) θ (rad)

Particle filter 0.371 0.372 0.326

Optimization based 0.338 0.936 0.796

Multi-hypotheses Kalman filter 0.404 0.402 0.243

Table 5.2: Standard deviation comparison between different localization algorithm re-
sults

5.3.2. Functionality

From the illustrations of the localization trajectory in Figure 5.3, 5.4 and 5.5, all the
three localization algorithms solve the initial global localization problem and tracks the
robot position after global localization.

Concerning the ability to recover from kidnapped situation, from the three approaches,
only multi-hypotheses Kalman filter localization recovered the robot position at the end
of the log. That is because the robot observed an “X” junction near the center circle,
and resampling is triggered to recover the robot position. However, “X”, “T” junction
detection and resampling is only used in multi-hypotheses Kalman filter localization
algorithm, not in particle filter and optimization based localization, therefore the other
algorithm can not recover in this case. Particle filter localization is also capable to do
resampling when “L” junction, penalty area or center circle are seen.

5.3.3. Efficiency

Last but not the least, the average execution time per perception frame of the log is
measured for each algorithm to compare the efficiency. For the purpose of benchmark,
the NAO robot is configured only to run the localization algorithm. In this thesis, the
execution time of particle filter can be regarded as a base line for other algorithms, as
we know that particle filter algorithm could be run seamlessly on the robot together
with other necessary SPL modules. Table 5.3 depicts the average execution time per
perception frame for each localization algorithm2. Within Table 5.3, multi-hypotheses
Kalman filter localization out-performs the other localization algorithms in computation
speed, optimization based localization being the slowest.

2For detailed profiles of algorithm execution time, refer to Appendix A.1

58

5.3. Benchmarks

Particle
filter

Optimization
based

localization

Multi-
hypotheses

Kalman
filter

5

10

15

20

6.502

18.761

5.032

E
x
ec

u
ti

on
T

im
e

(m
s)

Table 5.3: Average execution time per frame of the perception log for different localiza-
tion algorithms running on the NAO robot.

59

5. Analysis and Benchmark

60

6. Conclusion and Future Work

6.1. Conclusion

In this thesis, two localization methods are presented, one is optimization based localiza-
tion and the other is feature based multi-hypotheses Kalman filter localization. While
the most significant problem with optimization based localization is the high computa-
tional requirement which prohibits it from running on the robot, this thesis focuses more
on feature based multi-hypotheses Kalman filter localization due to the aforementioned
reasons.

For feature based multi-hypotheses Kalman filter localization, special characteristics
of SPL game have been considered for designing its motion model and sensor model.
To overcome the ambiguity of landmarks, different strategies are adopted to find the
correspondence between the observed landmark and the landmark on the field. By in-
corporating landmark based resampling, multi-modal probability distribution can be
described, and the localization of the robot becomes more robust and is able to recover
from tracking failure and kidnapped situations. In the end, both localizations are com-
pared with DAInamite’s particle filter localization. The feature based multi-hypotheses
Kalman filter localization out-performs the other localization algorithms in terms of
accuracy, efficiency and functionality.

The multi-hypotheses Kalman filter localization is tested in the real game during
Night of Science Frankfurt 2015 at Goethe University, and team DAInamite won one
game out of three. During the game, the situation was more unpredictable and complex
than the test environment, sometimes the robot could localize itself well, and sometimes
not. Although the winning of a game depends on many factors, the localization has a
significant influence on it. Therefore, the performance of the localization still have large
space of improvement.

6.2. Future Work

Future work will focus on improving the robustness of the localization. This can be
accomplished by incorporating more landmark features like goal posts or lines which
are perpendicular to each other, the lines do not have to be “L”, “T”, “X” junctions,
but have the potential to form one. On the other hand, the confidence of the robot
position currently depends only on the unique landmarks. Methods which incorporate
ambiguous landmarks like line landmarks or combine the states of multiple hypotheses
can be investigated.

6. Conclusion and Future Work

Moreover, resampling step could be smarter. Currently the resampling is done by
a single landmark which results in multiple possible robot positions. The resampling
step can be improved by combining all the types of junctions observed to generate robot
positions, which can significantly reduce the number of possible positions.

Collaborative localization using ball information can also help enhance the result of
localization. Since every robot which observes the ball has a belief of the ball’s location.
By gathering the information of the ball, it can serve as a globally unique landmark
which can help localization.

62

Bibliography

[1] Nao body version and type. Available at http://doc.aldebaran.com/2-1/
family/body_type.html#nao-version-bodytype.

[2] R. T. Committee, “RoboCup Standard Platform League (NAO) Rule Book,”
pp. 1–29, 2013.

[3] F. Dellaert, D. Fox, W. Burgard, and S. Thrun, “Monte carlo localization for mobile
robots,” in Robotics and Automation, 1999. Proceedings. 1999 IEEE International
Conference on, vol. 2, pp. 1322–1328, IEEE, 1999.

[4] R. E. Kalman, “A new approach to linear filtering and prediction problems,” Journal
of Fluids Engineering, vol. 82, no. 1, pp. 35–45, 1960.

[5] S. J. Julier and J. K. Uhlmann, “New extension of the kalman filter to nonlin-
ear systems,” in AeroSense’97, pp. 182–193, International Society for Optics and
Photonics, 1997.

[6] R. Van Der Merwe and E. A. Wan, “The square-root unscented kalman filter
for state and parameter-estimation,” in Acoustics, Speech, and Signal Processing,
2001. Proceedings.(ICASSP’01). 2001 IEEE International Conference on, vol. 6,
pp. 3461–3464, IEEE, 2001.

[7] E. a. Wan and R. Van Der Merwe, “The unscented Kalman filter for nonlinear
estimation,” Technology, vol. v, pp. 153–158, 2000.

[8] D. L. Alspach and H. W. Sorenson, “Nonlinear bayesian estimation using gaussian
sum approximations,” Automatic Control, IEEE Transactions on, vol. 17, no. 4,
pp. 439–448, 1972.

[9] M. J. Quinlan and R. H. Middleton, “Multiple model Kalman filters: A localization
technique for RoboCup soccer,” Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
vol. 5949 LNAI, pp. 276–287, 2010.

[10] G. Jochmann, S. Kerner, S. Tasse, and O. Urbann, “Efficient multi-hypotheses
unscented kalman filtering for robust localization,” Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), vol. 7416 LNCS, pp. 222–233, 2012.

http://doc.aldebaran.com/2-1/family/body_type.html#nao-version-bodytype
http://doc.aldebaran.com/2-1/family/body_type.html#nao-version-bodytype

Bibliography

[11] D. Gohring, H. Mellmann, and H.-D. Burkhard, “Constraint based world modeling
in mobile robotics,” 2009 IEEE International Conference on Robotics and Automa-
tion, 2009.

[12] M. Lauer, S. Lange, M. Riedmiller, and M. R. Martin Lauer, Sascha Lange, “Cal-
culating the perfect match: an efficient and accurate approach for robot self-
localization,” Robocup 2005: Robot soccer world cup . . . , vol. 4020, no. c, pp. 142–
153, 2006.

[13] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. MIT press, 2005.

[14] M. Riedmiller and H. Braun, “A direct adaptive method for faster backpropaga-
tion learning: the RPROP algorithm,” IEEE International Conference on Neural
Networks, 1993.

[15] S. Tasse, M. Hofmann, and O. Urbann, “On Sensor Model Design Choices for
Humanoid Robot Localization,” RoboCup 2012: Robot Soccer World Cup XVI,
pp. 380–390, 2013.

[16] The official 2014 B-Human code release. Available at https://github.com/
bhuman/BHumanCodeRelease.git.

[17] J. L. Bentley, “Multidimensional binary search trees used for associative searching,”
Communications of the ACM, vol. 18, no. 9, pp. 509–517, 1975.

[18] R. De Maesschalck, D. Jouan-Rimbaud, and D. L. Massart, “The mahalanobis
distance,” Chemometrics and intelligent laboratory systems, vol. 50, no. 1, pp. 1–
18, 2000.

[19] S. Zickler, T. Laue, O. Birbach, M. Wongphati, and M. Veloso, “Ssl-vision: The
shared vision system for the robocup small size league,” in RoboCup 2009: Robot
Soccer World Cup XIII, pp. 425–436, Springer, 2010.

[20] SSL-Vision modified for Standed Platfrom league. Available at https://github.
com/xuyuan/ssl-vision.

[21] D. Ball, G. Wyeth, and S. Nuske, “A global vision system for a robot soccer team,”
in 2004 Australasian Conference on Robotics and Automation, Australian Robotics
and Automation Association Inc, 2004.

64

https://github.com/bhuman/BHumanCodeRelease.git
https://github.com/bhuman/BHumanCodeRelease.git
https://github.com/xuyuan/ssl-vision
https://github.com/xuyuan/ssl-vision

A. Appendix

A.1. Speed Profiles of Localization Algorithms

The following program profiles are the total time (seconds) for executing the perception
log file refered in section 5.3 with repect to each localization algorithm. For the purpose
of benchmark, the execution of the log is performed on a NAO V4 robot without other
CPU intensive modules running. The total execution time is indicated at the top left
corner of the profile. Each box inside the profile is the function which is invoked by the
localization algorithm, and the size of the box corresponds to the occupation of execution
time.

A. Appendix

Figure A.1: Program profile of particle filter localization for executing the perception log
on the NAO robot.

66

A.1. Speed Profiles of Localization Algorithms

Figure A.2: Program profile of optimization based localization for executing the percep-
tion log on the NAO robot.

67

A. Appendix

Figure A.3: Program profile of multi-hypotheses Kalman filter localization for executing
the perception log on the NAO robot.

68

	List of Figures
	List of Tables
	Acronyms
	Introduction
	Motivation
	Problem Statement
	Robot Hardware
	Standard Platform League Field
	Problem Formulation

	Thesis Outline

	Background and Related Work
	Bayes Filters
	Particle Filter
	Kalman Filter and its Ramifications
	Kalman Filter
	Kalman Filter Variants
	Multi-Model Kalman Filter

	State of the Art of Robot Localization in RoboCup
	Software Architecture of DAInamite
	Vision Perception

	Self-localization Pipeline
	Motion Update
	Motion Model
	Process Noise Model

	Sensor Update
	Optimization Based Model
	Feature Based Model
	``T'' and ``X'' Junction Detection
	Measurement Model Choice
	Measurement Noise Model
	Landmark Correspondence
	Multiple Simultaneous Measurements

	Multi-Hypotheses Kalman Filter
	Hypothesis Model Weighting
	Landmark Based Resampling
	``L'' Junction Look Up Table

	Best Hypothesis Model and Confidence
	Model Pruning
	Pruning by Weight
	Merging by Mahalanobis Distance
	Pruning by Distance to Best Model

	Analysis and Benchmark
	Experiments Setup
	Ground Truth
	Perception Log

	Code Optimization
	Benchmarks
	Accuracy
	Functionality
	Efficiency

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Appendices
	Appendix
	Speed Profiles of Localization Algorithms

