
Technische Universität Berlin

Reactive Full-Body Behaviour for Humanoid
Robot

- ball blocking behaviour for robot field player

Bachelor Thesis
Fakultät IV -Eletrotechnik und Informatik

Fachgebiet Agententechnologien in betrieblichen Anwendungen und der
Telekommunikation (AOT)

Prof. Dr.-Ing. habil. Sahin Albayrak
Fakultät IV Elektrotechnik und Informatik

Technische Universität Berlin

vorgelegt von
Johannes Schneider

Betreuer: Dr. Yuan Xu

Johannes Schneider
Matrikelnummer: 350423
Waldeyerstraße 9
10247 Berlin

Erklärung der Urheberschaft

Ich erkläre hiermit an Eides statt, dass ich die vorliegende Arbeit ohne Hilfe Dritter
und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; die aus
fremden Quellen direkt oder indirekt übernommenen Gedanken sind als solche kenntlich
gemacht. Die Arbeit wurde bisher in gleicher oder ähnlicher Form in keiner anderen
Prüfungsbehörde vorgelegt und auch noch nicht veröffentlicht.

Ort, Datum Unterschrift

II

Summary

This work approaches a full body reaction on the example of a ball blocking behaviour
for a robot in SPL league. To find an interception between possible blocking locations
the ball velocity will be calculated. The created motions are able to block along blocking
lines and create blocking locations on these lines. A block behaviour which utilizes this
feature was created.

III

Zusammenfassung

Diese Arbeit befasst sich mit mit einer vollkörper Bewegung am Besispiel eines NAO
roboters für die SPL League. Dabei wird versucht den Abfangpunkt des Balls mit Hilfe
der Ball Geschwindigkeit zu bestimmen. Di e erstellten Block Bewegungen blocken ent-
lang von block Linien und erstellen Abfangpunkte auf diesen. Dieses Verhalten wurde
in das Verhalten des Roboters eingefügt.

IV

Contents

Erklärung der Urheberschaft II

Summary III

Contents V

1 Introduction 1
1.1 Motivation . 1
1.2 Approach and Goals . 2

1.2.1 Block Motion . 3
1.2.2 Ball Model . 3
1.2.3 Ball Blocking Behaviour . 3

1.3 Structure of the Thesis . 3

2 Background 5
2.1 Nao robot . 5
2.2 Motion . 5

2.2.1 Key Frames . 6
2.2.2 Choreographe . 7

2.3 SimSpark . 7
2.4 Vision of the NAO robot . 8

2.4.1 Kalman Filter . 8
2.5 Ball Blocking Behaviour . 9
2.6 Problem Summary . 9

3 Solution 11
3.1 Block Motion . 11

3.1.1 Testing the block motion . 13
3.2 Ball Model . 13

V

CONTENTS VI

3.2.1 Interception Point . 13
3.3 Ball Blocking Behaviour . 14

4 Implementation 17
4.1 Implementing Block Control . 19
4.2 Ball Hypothesis in Field Frame . 19

4.2.1 Ball Velocity . 19
4.3 Implementing Block Motion . 20

4.3.1 Poses . 21
4.3.2 Emergency Block . 22

4.4 Implementing Interception Point . 22
4.5 Implementing Ball Blocking Behaviour 25

5 Conclusion 26
5.1 Summary . 26
5.2 Evaluation . 26

5.2.1 Evaluation Block Motion . 26
5.2.2 Evaluation Block Behaviour 27
5.2.3 Evaluation Ball Model . 27

5.3 Conclusion . 28
5.4 Future Work . 28

Bibliography 29

List of Figures 30

List of Tables 31

Abkuerzungsverzeichnis 32

Chapter 1

Introduction

robot:
"A machine capable of carrying out a complex se-

ries of actions automatically, especially one pro-

grammable by a computer."

oxford dictionary [5]

"By 2050, a team of fully autonomous humanoid

robot soccer players shall win a soccer game, played

according to official rules of FIFA, against the

winner of the most recent FIFA World Cup."

RoboCup grand challenge, 1997, [6]

1.1 Motivation

Since 1954 when the first automated robot was created, robots are used for dangerous
or repetitive actions.
But their usefulness is not limited to the industry and production. The field of applica-
tion grows and, depending on the field of work, robots have different forms and sizes.
The number of robots used in the industry is increasing. But the use is not limited to
industrial robots. More and more robots are also used in normal households. With the
transition of robots out of factories the requirements rose, namely the number of en-
vironmental conditions and outside influence. The robot must be able to react fast to
changes in its environment, the perception and the evaluation must be quick and with a

1

1.2 Approach and Goals 2

low error rate. To ensure this and to minimize interference factors, clearly organized and
defined surroundings are preferred. The restricted rule-set of a soccer game, limiting the
allowed moves, the obstacles on the field and the clear defined field itself is a good ex-
ample for this. The soccer world cup for robots is the RoboCup and this work will be
centred around the standard platform league (SPL) of the RoboCup. The RoboCup itself
is an soccer orientated game of two teams playing against each other. In the SPL the
players of both teams are NAO robots from Aldebaran-Robotics and act autonomously
during the game. The goal is, to score as many goals with the ball.

All the outside variables, the robots itself, the field, goals, ball are clearly defined in
size, shape and colour.

In the SPL all modifications are only in the code implementation, as in the name
suggested all code runs on a standardized platform, the NAO robot.

In the RoboCup SPL final of 2016 the B-human [3] from Bremen and UT Austin
Villa [2] has shown great soccer. For example the block movements of this two teams
where exemplary and effective. Both teams were able to deflect the ball with normal
field players.[1] With these they were able to reduce the amount of shots reaching the
goal area and disturb the enemy play itself. Also with these the players could increase
the ball possession time.

The SPL team of the TU-Berlin is called DAInamite. The DAInamite implemen-
tation is lacking a blocking behaviour, except for the keeper of course and this could
greatly increase their performance on the field. This block movement is a way to get
into possession of the ball by interrupting actively the path of the ball or at least in-
terrupt the path of the ball that it poses no danger to score. Once a behaviour in the
restricted and clearly defined environment is created and working, the results and the
behaviour itself can be moved out of the confined game. New extensions, scenarios
can be added to adapt better this the real life application. Blocking the ball might not
have many real life applications outside of playing soccer, but once the behaviour is
established, it can be conveyed to any reactive full body behaviour.

1.2 Approach and Goals

The goal of this work is the creation of a working block motion and the implementation
into the play behaviour of the robot. With the block the robot will be able to stop the ball
from various directions, interrupting the ball movement and stop the ball. Thanks to this
behaviour the robots and team will be able to defend more successfully and increase the
ball possession itself. This addition will ultimately help scoring and winning.

1.3 Structure of the Thesis 3

1.2.1 Block Motion

There is no block motion for field players at the moment. The motions of the keeper uses
in great extend the arms to increase the block, a practice not desired for the field player.
The new block motion need to be created and they need to be fast and stable. Also it is
necessary to create different block movements for different situation for example a far
reaching motion to block a distant ball.

1.2.2 Ball Model

The Ball Model consists of all information and calculations concerning the ball itself,
for example the position of the ball relative to the robot. The Python class is the ball
tracker class. The ball tracker class calculates with an implementation of a Kalman
filter the position of the ball. A Kalman filter is "a technique for filtering and prediction
in linear Gaussian systems [...]. The Kalman filter implements belief computation for
continuous states."[7]

• Vision: the ball needs to be detected and the trajectory needs to be calculate

• the error in detecting the ball position stationary is sufficient, but needs an error
handling and precision in movement

• the error handling depends on the distance to the ball, by inaccuracies in height
and in the angle

1.2.3 Ball Blocking Behaviour

The goal of the ball behaviour is a smooth transition from the original state into the
block behaviour. This only occurs if the ball is in reach and it is realized in the ball
model. Then the robot executes the ball block via the ball motion.

• bring the block motion and ball model together

1.3 Structure of the Thesis

This thesis is structured as follows. In Chapter 2, I discuss essential background related
to the thesis topic. This will include detailed information about the NAO robot used in
the SPL and which is the model in the SimSpark simulation environment. The SimSpark
will be discussed also as well basis for Motions for the NAO robot and Kalman filter

1.3 Structure of the Thesis 4

used for the Perception.This chapter also represents a detailed analysis of the problem
that will be addressed. In particular, the problems of the motion and ball model. In
Chapter 3, my planned solution is presented. This solution covers the block motion
itself, the ball model and how it comes together in the ball blocking behaviour. Also
I will discuss how the quality of the new component is tested in SimSpark. Chapter
4 explains the Implementation for the SimSpark Simulation. Chapter 5 evaluates our
solution basing on our specified goals and I conclude and revisit the points above under
the finished implementation.

Chapter 2

Background

In the following chapter are the details about the environment, robot and functions I
used in this work. It consists of the simulation environment and all necessary compo-
nents. The robot has a motion class for movement and operation of all the joints. The
perception class handles the sensor data and a Kalman filter is used to refine this data.

2.1 Nao robot

This work is using the NAO robot by Aldebaran-Robotics. The NAO robot is a hu-
manoid robot. It has a small height of 57.4 cm, different sensors, like camera and
ultrasonic, and 25 joints. [4] The NAO robot supports different languages like C++ and
Python, which is used in this work. The robot has a ATOM Z530 1.6 GHz CPU, 1 GB
RAM, 2 GB Flash memory and a 8 GB Micro SDHC. The sensors of the NAO robot
include force sensitive resistors, inertial units, sonars, joint position sensors and contact
and tactile sensors. Also the robot has microphones, infra-red and two cameras. Both
cameras are mounted in the middle of the head, on top and bottom. They cover both a
47.64◦ angle high and 60.97◦ angle wide. The Top Camera goes forward (with a 1.2◦

offset downwards) and the bottom camera is located with a 39.7◦ offset downwards. The
bottom camera is in this position for a better visual feedback of the area in front of the
feed while walking, mostly for the ball.

2.2 Motion

The NAO robot owns 25 independently moveable unique joints. The hip joint is only
one motor though listed as two separated joints. A motion consists out of the names of

5

2.2 Motion 6

the joints which will be changed, the new angle of the joint and the time when the angle
should be reached. Through angle interpolation can the movement be calculated at any
given moment.

Figure 2.1: fig: joints and maximum angles of the NAO

The existing block implementation are for the goal keeper. These motions are mainly
restricted to this player. Also the ball model is only reliable in this stationary position.

2.2.1 Key Frames

A motion consists of the names of the joints which will be manipulated, the joint angle,
either the total value the angle assumes or a relative value and the time when the angle
should be reached.

jnames = (jHeadPtch, ..., jLAnkleP itch)

kkeys = ((kHeadPitch1 , ..., kHeadPitchn), ..., ((kHeadPitch1 , ..., kHeadPitchl
),)

ttimes = ((tkHeadPitch1
, tkHeadPitchn

), ..., (tkHeadPitch1
, ..., tkHeadPitchl

)

motion = (jname, kkeys, ttimes)

Each of the keys needs a time. Each joint can only move in one direction of possible
three. (yaw, pitch, roll) To execute the motion an interpolation of the angles is necessary.
This is done in the AngleInterpolation function in the motion class.

2.3 SimSpark 7

Figure 2.2: Roll Pitch Yaw

2.2.2 Choreographe

Choregraphe is a multi-platform desktop application, which is able to create animations.
Also Choreographe is able to create behaviours and dialogues, tests, control and write
scripts with Python or create applications. The possibility of creating animations was
used here to create the blocking motions. The motions where exported and converted to
Python functions.

2.3 SimSpark

The simulation environment is SimSpark. SimSpark is an open-source generic simula-
tion system. It supports a multi agent simulations up to 22 agents (11 vs 11) and is used
since 2004. [8] It is based on the Spark, a generic simulation environment, SimSpark
features "realistic motor, heterogeneous robots and agent proxies" [8] The SimSpark
simulation provides all the sensor input. These inputs are processed by the same im-
plementations as on the robot in the real world. Also all the orders and commands by
the code are realized by the simulation. "Some of the sensors delivers information from
physics engine,such as joint position, gyro, accelerometer, and force resistance. Fur-
thermore,lines can be sensed by virtual vision. Additionally, a more realistic camera
which delivers images rendered via OpenGL hardware accelerated offscreen buffers is
implemented." [8]

Test Scenario
Simspark: This is a simulation environment. It is created by DAInamite for extended
testing of new components before it is transferred to the real NAO robots.

2.4 Vision of the NAO robot 8

2.4 Vision of the NAO robot

The robot is able to recognize its environment through a number of sensors, but the
perception of the ball is done with the two cameras in the head. The ball attributes
can be found in the SPL rules. Through these attributes like radius, colour definition
and pattern, the robot can distinguish the pattern from the other robots and other obsta-
cles. Through the strict border structure of the play field and a number of assumptions
the number of white and black patterns next to each other is minimal.Black and white
patterns in the surroundings, outside the field can be ignored.

The interception point between robot and ball can be calculated by knowing the ball
position. The speed of the ball is calculated though the time of perception of the ball.
This can be used to calculate when the block needs to happen.

There are moments when the robot should not block. The robot should only register
and react when the ball is passing by the robot. Also he should not block balls from
himself or his team-mates, only when the ball is going into the robots own goal direction.

2.4.1 Kalman Filter

In order to deal with the uncertainty of perception and optimize the localization of the
ball a Kalman filter is used. The Kalman filter is a method of prediction in a linear
Gaussian system. The filter takes a series of measurements over a period of time as
input and is able to estimate an accurate prediction about future measurements. This
is done by using a joint probability distribution over each of the measurements. in this
way the noise and inaccuracies of the data are flatten and reduced.
Assumed a moment in time t, the following moment in time is t+1, the prediction is the
mean µt, the probability of the moment is defined by p(xt | ut, xt−1), ut is the control
data, the informations got by sensors, t− 1 is the moment before the moment t.

The Kalman filter algorithm for linear Gaussian state transitions:[7]

2.5 Ball Blocking Behaviour 9

1: input: µt−1,Σt−1, µt, zt

2: µ̄t = Atµt−1 +Btut

3: Σ̄t = AtΣt−1A
T
t +Rt

4: Kt = Σ̄tC
T
t (CtΣ̄tC

T
t +Qt)

−1

5: µt = µ̄t +Kt(zt − Ctµ̄t)

6: Σt = (I −KtCt)Σ̄t

7: output: µtΣt

zt is the the Gaussian noise vector,Σt−1 is the covariant , At is a matrix in dimension of
the vector of the state xt, Bt is the matrix in dimension of the control vector ut, Ct is a
matrix in the dimension of the vector zt,

2.5 Ball Blocking Behaviour

The game state transition system is a finite state machine.

• Include Ball Model and Block into behaviour:
Determinate the best way to interrupt the actual behaviour and change into the
ball block behaviour if a ball block is needed/recommended.
The change into the ball behaviour is triggered by a ball moving into range with
an intercept able path.
Afterwards the situation needs to be evaluated and the best behaviour must be ac-
tivated.

• Test Behaviour in Simulation: implementation in Simspark and testing in Simspark

2.6 Problem Summary

As in the sections before explained, the robot uses the implementation of the RoboCup
Team of the DAI-Labor, DAInamite. These Implementation will be extended by the ball
block. For the motion, ball model and the behaviour itself will created an own python
class. The motion class will calculate the best block depending on the situation. The
criteria will be the stability of the block vs. time and extend needed to intercept the ball.

2.6 Problem Summary 10

goToBallAndShoot SearchForBall

ClearBall

is_ball_lost

is_ball_in_clear_distance

is_current_state_successful

is_ball_lost
is_ball_in_shoot_distance

Figure 2.3: The behaviour of the striker

Chapter 3

Solution

The solution consists of three steps. First the robot needs to be reactive, perceive the
environment and act by this perception. This will be realized in the ball model. The
action needs to work towards the goal, in this case block the ball. The blocking is
realized with the block motion. Both components will come together in the integration
into the ball behaviour.

3.1 Block Motion

The key frames for the block motion can be created in Choreographe. The keys and the
names of the motion are exported in .xml format in a .xap file. These can be imported
in Python and then converted in the needed form.

The motions will assume the left leg as the leg the robot is standing on and execute
a block to the left side (from the robots point of view). For blocks to the right side the
keys will be converted. The goal of the new implementation is to create a standard block
motion for a basic use case, for example a simple block of a straight ball which would
pass by the player..

• Block in Simulation: implementation in Simspark.
Testing the quality of motion, in this case the block motion, will be done by a
series of movements. These will determine how stable the motion ends. Falling
and loosing balance will give negative test result.

• Test block in Simulation: testing in Simspark

Different position will need different motion. The further the leg is extended, the
longer it takes and the motion becomes less stable. Blocking the ball should always use

11

3.1 Block Motion 12

the closest block. This reduces the time needed to get into the stance and the chance of
interaction with obstacles (goal post and other robots) Also there might be the need of
an "emergency" block when the ball comes fast, there is no time to prepare or it is to
late for a proper block.

The robot should do a block motion which includes the following points:

• rules: the motion needs to follow the rules and spirit of the SPL Rule book. This
means especially that no hands may used to block the ball, unless it is the keeper
in the penalty area.

• wide range: the block motion should be able to reach and block as many positions
as possible in the action radius of the robot.

• success: the motion should be able to block the ball, interrupt its movement and
reflect its path to a better position then the ball would move to without the block

• stability: the robot should not fall over by the motion itself, even better, the motion
should be stable enough to survive collision with obstacles(ball, robot or goal).

• speed: the robot should only spend as less time as possible blocking and safely
return to its normal behaviour.

• stress: the stress to the joints need to be minimal. Extremely fast motions as well
as high weight on single joints should be prevented

The ball might move through the action radius of the robot without crossing the x-
axis in the action radius of the robot. To increase the chance of blocking these balls,
additional motions for blocking along the g(x) = x line and the x axis are created. This
should increase the possibilities of blocking the ball.

Figure 3.1: Block lines, 1: g0, 2: g1, 3: g2, 4: Interception Location

3.2 Ball Model 13

The block lines above are defined as following, with the local robot coordinates (0,
0) in the middle of the robot. From the ball position the route of the ball defined by its
velocity will intercept with the block lines.

g0(x) = 0

g1(x) = x

g2(x) = −x

The maximal length of these block lines are defined as the possible extension of the leg
without loosing stability.

3.1.1 Testing the block motion

Each of the block motions will be tested in the SimSpark simulation. For that the Agent
class will be customized. Testing the quality of the block motion will be done by a series
of movements. These will determine how stable the motion ends. Falling and loosing
balance will give negative test result. The motion will consist of 10 iterations of the
block and return to the stand in short sequence.

3.2 Ball Model

Each change of a joint changes the posture of the NAO robot and with that the perception
of the ball. The ball model needs the ball position from the perception. This is received
as a ball hypothesis.

ball_hypothesis = (position(x, y), velocity(vel_x), vel_y), error, ball_last_seen

The ball velocity given by the ball hypothesis has a big error margin, an own implemen-
tation is needed. Given a good ball position the ball velocity can simply be calculated.

3.2.1 Interception Point

The interception point is where the balls route will intercept with the positions the robot
is able to block. The interception point class will have the coordinate where the ball
meets the possible block lines. The interception point will be added to the agent. Each
time the perception is updated, so will the interception point.

The interception point is calculated from the ball position and the ball. The direction
of the ball movement will be one of the following.

3.3 Ball Blocking Behaviour 14

1. the velocity be (0,0)

2. the velocity direction is parallel to the ground interception line

3. the velocity is too little, it will become (0,0) (by damping)

4. the interception point is out of range

5. blocking possible

3.3 Ball Blocking Behaviour

The goal is to include the ball model and ball blocking into the existing behaviour. The
ball behaviour consists of three states, between which the robot may change.

• goalie: only one goalie is allowed per team, it will assume this role if he is given
the order. It already keeps the ball off the goal and has a blocking, parry behaviour.

• striker: the striker is the player which is closest to ball and is supposed to interact
with the ball.

• supporter: if the player is neither goalie nor striker.

The ball block will be only added to the striker behaviour, because it is supposed to be
the only one interacting with the ball. The goalie behaviour will be used as an example.
The condition function will be using the interception point from the agent and decide
by this calculation if it will block or continue with the originally go to ball and shoot
behaviour. The block behaviour consists of a distance and interception function which
calculates the condition for changing the state. The block will be able to transit from
the goToBallAndShoot state into the block state. The State goToBallAndShoot needs to
see the ball (it will change into the SearchForBall state if the robot looses the ball) and
will already try to shoot the ball if the ball is in range. Otherwise it will make the robot
walk towards the perceived ball and face the ball. This is a good position for blocking
the ball. The ball block itself will only execute the block motion and then return into
a neutral position, from where the robot can continue with ease.Then the robot returns
into the goToBallAndShoot state automatically. There are no other transitions in the
striker behaviour needed:

• If the ball is lost, the robot can not block.

• If the robot shoots, the robot does not need to block the ball.

3.3 Ball Blocking Behaviour 15

goToBallAndShoot Block

SearchForBall

ClearBall

get_interception

is_ball_lost

is_ball_in_clear_distance

is_current_state_successful

is_ball_lost

is_ball_in_shoot_distance

always_true

Figure 3.2: The striker behaviour with block extension

3.3 Ball Blocking Behaviour 16

Determinate the best way to interrupt the actual behaviour and change into the ball
block behaviour if a ball block is needed/recommended. The change into the ball be-
haviour is triggered by a ball moving into range with a possible interception location.
Afterwards the ball the situation needs to evaluated and the best behaviour must be ac-
tivated.

Chapter 4

Implementation

The implementation was done in Python and uses the DAInamite code from GitHub.
The code consists of the possibility in the agent (spark_agent) to add the block_control,
which uses the new interception_point class.
To ensure this, a block control, an interception point and a ball blocking behaviour is
created. The block_control is feed with the ball_hypothesis from the Kalman filter of
perception of the agent. The block control also uses a Kalman filter to clear the ball
position given by the ball hypothesis. The block control updates the interception point
with the ball position and ball velocity from the Kalman filter.

If the interception point has possible interception locations, the interception time
is calculated, when the block should happen. Also the best block motion out of the
created block motions is chosen. The chosen motion then is executed with the angle
interpolation function of the motion class of the agent.

Also there is a emergency block motion, a wide spreading of the legs when the ball
is coming close to the robot and no other block motion of the robot is possible.

In the following I will use different coordinate systems. The global robot coordinate
system is centred on the starting point as (0 , 0) and every movement is tracked inside.
The local ball position is relative to this robot position. The global ball position is the
calculated position of the ball in the global robot coordinate.

All calculations about the position are repeated in every update of the block control.

17

18

Figure 4.1: Structure of the implementation

4.1 Implementing Block Control 19

4.1 Implementing Block Control

The block control is a hub, where the information about the robot, position, rotation,
joint angles and the ball position and velocity come together, before the ball is evaluated
in the interception point class. The ball position is relative to the NAO robot in local
coordinates. These are transformed into the global position of the robot. The block
control is updated every time sense is called. Sense updates the perception including all
the vision, time, odometry and posture in every iteration. Following data is updated in
block control:

• best ball hypothesis in field frame

• time (from perception)

• pose of the robot (x, y, rotation angle)

The block control calculated the velocity and creates, if possible, the interception point.
The velocity is tracked via a Kalman filter. This is an additional filter for tracking the
velocity while the first Kalman filter tracks the multiple ball hypothesis. The Kalman
filter is used to reduce the noise and minimize the impact of false positives of the ball
position further.

4.2 Ball Hypothesis in Field Frame

The ball hypothesis is the hypothesis of the Kalman Filter. Only the best one is used. it
consists of the ball position, ball velocities, the error and the time when the ball was last
seen. The position from the best ball hypothesis is translated in the field coordinates.

ball_hypothesis = (x, y, velx, vely, error, ball_last_seen)

4.2.1 Ball Velocity

The ball velocity included in the ball hypothesis does not bring good result in its own
error margin.

The most important part of the whole ball model is the direction and the velocity
of the ball. With the velocity it is possible to determine the point of interception and
the time. Sadly the velocity given by the best_ball_hypothesis_in_field_frame has a big
area of error while the observing robot is moving.

4.3 Implementing Block Motion 20

Figure 4.2: Positions of the Ball Position with no movement (0,0)

v = s
t

vx = posx
t

vy = posy
t

The graphic above shows the result of the filtered Ball position. One unit in game is app.
1.15m. The ball position is roughly between (0.161m - -0.3m , 0.1m - -0.08m).

The noise is reduced, but the calculation of the velocity produces a spread. The ball
position is updated in every iteration. That makes the time <0.1s. This increases the
minimal changes in position to a larger velocity. A additional Kalman filter was used to
reduce the noise. To calculate the Interception point from here produces errors.

A correct localization of the robot is needed. With a correct localization, no move-
ment of robot and ball, the perceived ball position changes around 0.1 units.

4.3 Implementing Block Motion

The block motion was done in Choreographe. It was exported and is an extra .xap file.
The needed motion for the block is loaded in the beginning and locally stored. The file
is formatted in the usual names, keys, times format.

4.3 Implementing Block Motion 21

Figure 4.3: Velocity of the Ball Position with no movement (0,0)

4.3.1 Poses

As in Figure 4.4 seen, there are multiple poses available. The right block motions are
identical as the left block except that the pitch and yaw joints in side specific joints are
inverted. This was done in the conversion from Choreographe.

In Figure 4.6 the different foot position are shown. Without moving the supporting
foot it was not possible to put the foot down on the g0 base line. Turning the robot in
position might make it collide and fall.

All the motions are created with the left leg remaining on the floor and extending the
right leg to the block. To inverse this, blocking with left leg, a function was created. In
this function all occurrence of left and right are reversed.

4.4 Implementing Interception Point 22

Figure 4.4: Side Long, Side Short, Degree Short, Degree Long

Figure 4.5: Side Long Right, Side Short Right, Degree Short Right, Degree Long Right

4.3.2 Emergency Block

The Emergency block is a last resort block. It covers unspecified a large area on the cost
of stability and a high chance of falling or losing stability. It is only used if there is a
high chance of a goal and that might stop the ball. It is only used in closed proximity of
the own goal.

4.4 Implementing Interception Point

The interception point saves the ball positions and times when the position are perceived
and uses these to get the vector the ball is moving. The interception point uses the ball
position, player position, ball velocity and time from the block control.

The ball line was calculated from the ball position and the ball velocity.

4.4 Implementing Interception Point 23

Figure 4.6: Room Coverages of the poses (Left)

Figure 4.7: Emergency Block

4.4 Implementing Interception Point 24

Figure 4.8: Block lines, 1: h0, 2: h1, 3: h2, 5: h3

ball position: ballpos = (x, y)

ball velocity: ballvel = (velx, vely)

ball line: ball(x) := yball_vel
xball_vel

x+ xball_pos ∗ yball_vel
xball_vel

+ yball_pos

The interception location of the movement vector of the ball and the original block
lines of the robot were calculated as following.

g0(x) := a0x+ c with a0 = 0 and c = 0
g1(x) := a1x+ c with a1 = 1 and c = 0
g2(x) := a2x+ c with a2 = -1 and c = 0

ball(x) := bx+ d

P (d−c
a−b

, ad−c
a−b

+ c)

The ball will intersect with the base line of the robot, but it might be out of range of
the robot.

After creating the motions it was needed to change the angles of the block lines:
The new block lines above are defined as following, with the local robot coordinates

(0, 0) in the middle of the robot.

h0(x) := 2
3
x with a0 = 2

3

h1(x) := 10
6
x with a1 = 5

3

h2(x) := −10
6
x with a2 = −5

3

h3(x) := −2
3
x with a3 = −2

3

ball line: ball(x) := bx+ d

Pall = P0(
d

a0−b
, a0

d
a0−b

), ..., P3(
d

a3−b
, a3

d
a3−b

)

With the new block lines the interception point class is able to create possible block
locations and times.

With the Interception locations Pall now the best location needs to be in front of
the robot and less than the maximum extension of the pose away from it. If multiple

4.5 Implementing Ball Blocking Behaviour 25

poses could block the ball, the pose with the smallest extension of the leg is chosen.
The longer blocks extend 0.28 units and the shorter 0.15. If the interception location is
closer than 0.15 to the robot, a short block is used, is it bigger a long block. Is it wider
than the 0.28 the robot can not block the ball with this motion.

The robot should only block balls going into his side. To insure that the robot only
blocks if he is facing the enemy goal or the ball is directed into the global area between
(-4.3, 0.75), (-4.3, -0.75) for the left side and (4.3, 0.75),(4.3, -0.75).

Is no ball position perceived, no interception point is calculated.

4.5 Implementing Ball Blocking Behaviour

The Block behaviour was added to the Striker class. To change the state the interception
point needs to fulfil one of these conditions:

• There must be an interception location and the moment for beginning a block has
come (motion duration)

• The ball is too close to the robot, it performs the emergency block.

Chapter 5

Conclusion

5.1 Summary

In chapter 2 I discussed the backgrounds of this work, the robot, the simulation environ-
ment and the perception.
Afterwards, in chapter 3, the problem was described. The motion, the ball model and
the ball behaviour were introduced.
The fourth chapter showed the solutions and the fifth the implementation of the motion,
model and behaviour.

5.2 Evaluation

5.2.1 Evaluation Block Motion

The proposed block motions works in the test environment and blocks the ball success-
fully. The block motions were tested with a modified simspark_motion agent with the
IPpthon enabled. To test and evaluate the motion it was checked if the robot is able to
perform the motion fast (under 1s execution time from start to finish), if the robot was
able to stop the ball in this position and go back into a neutral standing position.
The creation in Choreographe and the converting of the ball motions into functions
worked very good.

26

5.2 Evaluation 27

name successful repetitions stability, comments
short block 45◦ left 50/50 Stable
long block 45◦ left 50/50 Stable, but turns the

robot by app. 7◦

long block side left 48/50 mostly Stable, but turns
the robot by app. 30◦

short block side left 50/50 Stable, but turns the
robot by app. 35◦

short block 45◦ right 50/50 Stable
long block 45◦ right 50/50 Stable, but turns the

robot by app. 7◦

long block side right 50/50 mostly Stable, but turns
the robot by app. 30◦

short block side right 50/50 Stable, but turns the
robot by app. 35◦

Table 5.1: Block motion test in SimSpark

5.2.2 Evaluation Block Behaviour

The block behaviour performed as proposed works successfully. It changes into the
block state when the robot is supposed to block. To test the block behaviour, the ball
positions where directly given to the block control and the perception of the robot were
bypassed. With this modification the block performed successfully. The right block is
chosen according to the situation.

5.2.3 Evaluation Ball Model

The proposed block model does not fulfil the requirements. The error around the real
ball position is too big to distinguish correctly between the needed and the proposed
block motions. The ball model creates wrongly block attempts. This is caused by spikes
in the velocity. These spikes are created by a relatively high error of the position multi-
plied by the short time of measurement. This creates way higher velocities then the ball
really has and triggers the interception location with only short time to react (because of
the high velocity).

5.3 Conclusion 28

5.3 Conclusion

As described before, the approach to the blocking with the velocity of the ball brings
problems with it. The perceived position of the ball has a great uncertainty and in the
calculation of the speed in small time windows this error is multiplied. To gain a reliable
interception point and interception time out of this is unlikely and I was not able to do
so. The approach might need to change. Either have a better error correction to calculate
the right velocity and time or change the whole approach. It seems to make sense to try
to improve the perception in order to be able to calculate the right velocity of the ball.
This would open new possibilities of interaction between the robot and the ball, with the
possibility of improving not only the blocking, but also the passing and shooting of the
ball. All the components worked alone in simple test environments without noise and
without relying on the perception of the robot by feeding correct positions.

5.4 Future Work

While the approach over the velocity seemed promising, I was not able to find a solution
to the problems at hand. Because of the unreliable ball position, it was impossible to
distinct the real ball motions from the error of the perception. Once the problem with the
velocity is solved or an other approach is found, which gives reliable interception loca-
tions, the block motions itself can be improved. One way could be to have a threshold of
numbers of velocity which needs to be reached, before it recognises it as a real change
in position. This might lead to a slower reaction time, meaning only longer balls shot
could be blocked. Another approach could be to have a threshold barrier which triggers
the block no matter how fast the ball is, could lead to a successful block like with the
emergency block. For example the motions can be expanded. Another approach could
be to create a dynamic foot positing to stop the ball totally, to evolve the blocking of the
ball to a stopping.

Bibliography

[1] [RoboCup 2016] SPL final: B-human - UT austin villa - YouTube, 2016.
https://www.youtube.com/watch?v=XgRw42oHN-YS#t=25m06s , last checked
04.05.2017.

[2] The austin villa robot soccer team: Home, 2017.
https://www.cs.utexas.edu/ AustinVilla/ , last checked 04.05.2017.

[3] B-human, 2017. https://www.b-human.de/ , last checked 04.05.2017.

[4] Discover nao, the little humanoid robot from SoftBank robotics | SoftBank
robotics, 2017. https://www.ald.softbankrobotics.com/en/cool-robots/nao, last
checked 04.05.2017.

[5] Oxfor dictionary, 2017. https://en.oxforddictionaries.com/definition/robot
26.10.2017, last checked 29.10.2017.

[6] Regele, Levi, and Bott. Prorobot predicting the future of humanoid robots, 2004.

[7] Burgard Thrun and Fox. Probabilistic Robotics. MIT Press, 2006.

[8] Yuan Xu and Hedayat Vatankhah. Simspark: An open source robot simulator de-
veloped by the robocup community. RoboCup 2013: RobotWorld Cup XVII, pages
632 – 639, 2014.

29

List of Figures

2.1 fig: joints and maximum angles of the NAO 6
2.2 Roll Pitch Yaw . 7
2.3 The behaviour of the striker . 10

3.1 Block lines, 1: g0, 2: g1, 3: g2, 4: Interception Location 12
3.2 The striker behaviour with block extension 15

4.1 Structure of the implementation . 18
4.2 Positions of the Ball Position with no movement (0,0) 20
4.3 Velocity of the Ball Position with no movement (0,0) 21
4.4 Side Long, Side Short, Degree Short, Degree Long 22
4.5 Side Long Right, Side Short Right, Degree Short Right, Degree Long

Right . 22
4.6 Room Coverages of the poses (Left) 23
4.7 Emergency Block . 23
4.8 Block lines, 1: h0, 2: h1, 3: h2, 5: h3 24

30

List of Tables

5.1 Block motion test in SimSpark . 27

31

Definitions

DAInamite RoboCup team of the TU-Berlin
keeper/goalieGoalkeeper, always with jersey number 1
Nao Nao robot from Aldebaran-Robotics
Python An interpreted programming language with high fo-

cus on readability
RoboCup Robot soccer world cup with different leagues (see

SPL)
SimSpark Simulation environment for the Standard Platform

League
SPL standard platform league, all robots in the league are

the same
.xap file format and is a package managment system

32

	Erklärung der Urheberschaft
	Summary
	Contents
	Introduction
	Motivation
	Approach and Goals
	Block Motion
	Ball Model
	Ball Blocking Behaviour

	Structure of the Thesis

	Background
	Nao robot
	Motion
	Key Frames
	Choreographe

	SimSpark
	Vision of the NAO robot
	Kalman Filter

	Ball Blocking Behaviour
	Problem Summary

	Solution
	Block Motion
	Testing the block motion

	Ball Model
	Interception Point

	Ball Blocking Behaviour

	Implementation
	Implementing Block Control
	Ball Hypothesis in Field Frame
	Ball Velocity

	Implementing Block Motion
	Poses
	Emergency Block

	Implementing Interception Point
	Implementing Ball Blocking Behaviour

	Conclusion
	Summary
	Evaluation
	Evaluation Block Motion
	Evaluation Block Behaviour
	Evaluation Ball Model

	Conclusion
	Future Work

	Bibliography
	List of Figures
	List of Tables
	Abkuerzungsverzeichnis

