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Abstract

An efficient yet precise position estimation result is always desired. Localization acts
as key stone in many services and systems. The knowledge of current position affecting
decision-making progress means the origin of everything. Not to human in daily life,
also to the NAO humanoid robot in the worldwide competition RoboCup. Most imple-
mented localization approaches in NAO robot are based on vision which is restricted by
the site light circumstance also requests high computation power for successive image
processing.

In this thesis, an acoustic approach for self-localization and communication is de-
signed and implemented aiming at NAO humanoid robot under a real yet noise environ-
ment, i.e. RoboCup Soccer. This work contains two major parts. First actualising an
audio communication system using Frequency-shift Keying. The NAO robots exchange
position information using AFSK through the microphones and loudspeakers equipped
then decode the position information embedded in the AFSK signal by using appropriate
(Digital Signal Processing) DSP processes. The second part is using decoded position
information and BeepBeep ranging method to estimate the location of robot that is cal-
culated by Time Differences of Arrival (TDoA) algorithm. The orientation of robot is
given by an audio sample measuring method. The implemented software solution for
localization on NAO robots can provide loose localization within 1.5 meter error range
for 6 robots within 1 minute.
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Chapter 1

Introduction

Robot Soccer World Cup, as known as RoboCup, is an annual international robotics
competition conducted since 1997. Its goal is to foster research and development of
robotics and Artificial Intelligence (AI), by tendering a public appearing but challenging
competition. One of the subcategory of RoboCup aims soccer that all the teams use
humanoid robot NAO, that operates fully automatically, e.g. motion, vision, behaviour,
self-localization etc, during competition of RobotCup.

1.1 Motivation

Localization technologies as a comprehensive existence saturates our daily life. It is not
only meaningful to human, but also plays an important role for robots as a fundamental
in robotics. It has been broadly deployed in various applications. Position information
directly impacts the behaviour and decision-making of robots when playing. The robot
needs to be aware of where it is and where it should go to. By so far, most localization
and navigation applications for NAO robots are the vision-based approach, such as [1,
2, 3, 4] as same as [5], however it is apparently a restricted solution per se.

A crucial drawback of vision based localization systems is that they cannot be used
in many situations or environments due to the frequent blockage of the light by different
obstacles and structures. In the RobCup case, the vision based solution for localization
requires intensively computation due to the quality of images generated by embedded
cameras. Otherwise using cameras for robot self-localization the ambiguity by image
processing always occurs. Hence the capacity of the robot is limited often and the
reliability can not be assured.

If the robots are able self-localizing via acoustic method through the air, or a self-
localization function works like an aid compensating vision based localization, that dur-
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2 Introduction

ing a RoboCup soccer game the acoustic communication provides edge to the team as
the data transfer via WLAN is limited. If so, the robot could behave better and make
more reliable decision during the soccer competition via handing out a reasonable loca-
tion. Otherwise the audio communication method can reduce the burden of data traffic
on WLAN for information sharing during competition.

The Austrian Kangaroos, a humanoid soccer robot team of Vienna University of
Technology and University of Applied Sciences Vienna, tackled this problem in an out-
of-box way that the robots could talk with each other by taking advantage of digital
acoustic communication [6]. They state that “experiments at laboratory conditions show
good robustness even with presence of music and chatting students” in their report,
which could partially prove that data exchange through acoustics is possible even in
relatively harsh environment.

Acoustic positioning and communication have been applied, particularly for subma-
rine purposes, and have a long-standing history, such as the LORAN [7] in World War
II. Acoustic localization is more reliable and its estimation is more precise than others
approaches for indoor, for example the Cricket Tracker System [8] and the HX-Series
Positioning System from Hexamite.

However an acoustic localization system is able to control precisely the hardware,
sending and receiving, they are usually commodity hardware aiming clear purposes. On
NAO robot for acoustic experiments and Human-Robot interaction and communication
researching, such as [9, 10], the researching results point out that the performance is
limited by the hardware.

1.2 NAO Humanoid Robot

In [11] a NAO robot is equipped with a stereo broadcast system which is made up of
2 loudspeakers as shown in Figure 1.1. They, as sound transmitters, are responsible
for generating sound. The left one locates at (0.0038m, 0.0453m, 0.0526m), the right
one is symmetric about y-axis and at (0.0038m,−0.0453m, 0.0526m) [12], the origin
is located at the neck gear of the NAO robot.

The NAO robot has 4 microphones, MicroFront and MicroRear, MicroRight and
MicroLeft, as shown in Figure 1.2, their locations are in Table 1.1 respectively. The
RoboCup edition comes with 2 microphones, MicroFront and MicroRear.

The electrical bandpass of the microphone’s ways are from 300Hz to 8kHz.
The specification of [13] in NAO robot for V5 and V4 is:

• ATOM Z530 1.6 GHz CPU
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Figure 1.1: The locations of speackers in NAO humanoid robot V4.

Micro Name X(m) Y(M) Z(m)
MicroFront 0.0489 0.0 0.076
MicroRear -0.046 0.0 0.0814
MicroRight -0.0195 -0.0606 0.0331
MicroLeft -0.0195 0.0606 0.0331

Table 1.1: The positions of microphones in NAO robot

Figure 1.2: The locations of microphones in NAO humanoid robot V4
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• 1 GB RAM

• 2 GB Flash memory

• 8 GB Micro SDHC

1.3 Problem Statement and Goals

Even sound localization- and communication systems have emerged for decades, but
they are still isolated.

Particularly for humanoid robot a robust self-localization and communication based
on audio is way more rarer, many trials are trapped in laboratory environment. Other-
wise for implementing an accurate localization system or a suitable yet feasible local-
ization algorithms are definitely a kernel component existing and supporting many ser-
vices in many companies as the major pillar among others. Certainly those companies,
who handle such as outdoor localization, are facing more complicated environments,
e.g. Non-Line-of-Sight, multiple-path etc. However, for the humanoid soccer robot,
the requirements for localization are loose and the environment conditions by RoboCup
competition are geometrically tedious.

1.3.1 Problem Statement

• Audio Communication Process

The humanoid robots communicate with each other using Audio Frequency-shift
Keying (AFSK) to inform their present positions, when many audiences are stand-
ing on the outside of competition field and exchanging the thoughts on game while
the host is commentating and the voice is amplified through a lot of loudspeakers,
which is apparently more austere than the experiment in laboratory.

• Sound Localization Process

The geometric relationship for humanoid robot self-localization during gaming
stay mostly in 2D, since when game goes on, merely robots are on the compe-
tition field, therefore the Line-of-Sight (LOS) happens mostly by sound propa-
gating. But if when a robot fells on ground and the coach robot sits on the table
at the competition field margin, then the self-localization transforms from previ-
ously 2D into 3D. Besides, due to the limitations on the hardware in NAO robot
and the complexity of Digital Signal Process (DSP) procedures and localization
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calculation algorithms, the actualization of a real-time self-localization based on
audio on NAO robot is difficult to achieved effortlessly, if the whole process costs
too much time, then the result is useless, though accurate. Reaching a balance of
complexity between preprocessing speed and localization accuracy level is also
an important component.

1.3.2 Goals

The objectives of this master thesis are twofold: first, actualizing an audio based com-
munication system for NAO robot for position exchanging. Second, implementing the
acoustic localization system for position estimation. The characteristics of the to be
accomplished acoustic self-localization for autonomous soccer robots will meet the fol-
lowing criteria.

• Robustness

The audio communication for information exchanging among NAO robots is ro-
bust for differently environmental conditions, especially when the audio environ-
ment is varying and becoming complex.

• Loose Real-time

A strict real-time system on NAO robot is very hard to actualized because of the
limitation of hardware and complexity and computational requirements of Digital
Signal Processing (DSP) procedures. Hence, a relatively loose real-time localiza-
tion system is acceptable, but the potential delays have to be well handled as much
as possible.

• Fully autonomous

The robots are aware of the beginning and ending of audio self-localization pro-
cess, acting spontaneously.

• Accurate localization

The acoustic self-localization estimation result needs to be more accurate than
vision based approaches and methods, excluding extra hardware in NAO robot.

1.4 Thesis Outlines

This master thesis is organised as following.
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Section 2 introduces relative technologies and methods.
Section 3 provides an overview of work processes of acoustic self-localization on

NAO, and describes each component.
Section 4 explores possible solutions for constructing the acoustic self-localization,

determines the key process components.
Section 5 discusses the performances of acoustic self-localization on NAO about its

accuracy, efficiency, drawbacks etc.
Section 6 summarises and possible future work.



Chapter 2

Related Technologies and Methods

This chapter gives an overview of related technologies involving in self-localization of
autonomous soccer robots. The research focuses on tending reliabilities and accurate
localization estimation involved in Audio Frequency-shift Key (AFSK) scheme, Digital
Signal Processing (DSP) and localization algorithms. For increasing the possibility of
decoding and preservation of desired information embedded in audio, a Forward Error
Correction technique, the Hamming(7,4), is engaged to ensure correcting or detecting
errors as much as possible in finite data length by receiving side, as well as the BeepBeep
ranging method for an efficient yet accurate ranging estimation will be in this chapter
presented.

2.1 Frequency-shift Keying (FSK) Scheme

Frequency-shift Keying (FSK) is one of the most common digital communication meth-
ods in our daily life, such as high-frequency radio spectrum and telephone. The in-
formation is insetted in frequency, by changing or shifting (increasing and decreasing)
frequencies to communicate.

No doubt that Speech Synthesis and Speech Recognition technologies are close to
human. Such as Apple Sire and Windows Cortana, they could understand nature human
languages and their response is approximately or kind of like human communication
most time which needs supporting by huge data warehouse to provide this service.

But considering the limited CUP capacity and storage memory in NAO robot with
restricted data transferring during RoboCup per UDP within LAN, so a relatively high
efficient AFSK communication seems appropriate than a semantic communication ap-
proach.

7



8 Related Technologies and Methods

Figure 2.1: Binary Frequency-shift Keying example for a combination of
1100101000001

1. Binary FSK

The simplest one among FSK scheme is Binary FSK (BFSK), the information
is transmitted through one or two discrete frequencies to represent binary 1 and
0. The element length, i.e. the duration of sound ton for a single binary is be-
tween 5 and 22 milliseconds regularly that means, in 1 second 200 binary bits can
be transported maximally, but there are also many exceptions, e.g. less than 1

microsecond or greater than 1 second, for a high resolution channel the element
length to be greater than 0.5 millisecond is always expected [14].

2. Audio FSK

Audio FSK (AFSK) uses sound wave as medium encoding digital data in audio
tone. The transmission of AFSK is not capable for high speed data communica-
tion, because sound propagation in air is easily to be interfered by many elements
and the performances are disturbed by quality of low-layer hardware in traduc-
ers, or by minor voltage changing in energy supplier, as well as depending on the
software drivers and so on.
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p1 p2 d3 p4 d5 d6 d7
p1 p2 1 p4 1 0 0

Table 2.1: Hamming(7,4) table for encoding

p1 p2 d3 p4 d5 d6 d7
0 1 1 1 1 0 0

Table 2.2: Hamming(7,4) table for encoding (cont.)

2.1.1 FSK Demodulator

The demodulation methods for FSK can be divided into two major categories. FM
Detector-type demodulator and filter-type demodulator such as Goertzel algorithm [15].
The Implementation of this master thesis will put the emphasis on FM Detector-type
demodulator. In [14] the FM Detector-type demodulator has been very comprehensively
elaborated in an electronic point of view. In this paper, the process will not be introduced
redundantly, but focusing on implementation in programmatic standpoint.

2.2 Forward Error Correction – Hamming(7,4)

Hamming(7,4), one of the Hamming Code, which “can detect up to two-bit errors or
correct one-bit errors without detection of uncorrected errors” 1 in seven bits.

2.2.1 Hamming(7,4) Production

Assuming there is a four bits code 1100 that needs transporting. According to Ham-
ming(7,4) the four bits locate in positions d3, d5, d6 and d7. Then adding three addi-
tional check bits into the message positioning at p1, p2, p3 which are also called parity
bits illustrated in Table 2.1.

Hamming says that p1 is the parity bit for d3, d5 and d7 responsible, which are
(1, 1, 0), and (1 + 1 + 0) |2= 0 is even, so p1 = 0. Furthermore, p2 for d3, d6, d7,
and p4 for d5, d6, d7. Consequently, p1 = 0, p2 = 1 and p4 = 1, so the seven-bits
Hamming(7,4) code based on the sequence of 1100 is 0111100 as in Table 2.2.

1https://en.wikipedia.org/wiki/Hamming_code

https://en.wikipedia.org/wiki/Hamming_code
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p1 p2 d3 p4 d5 d6 d7
0 1 1 1 1 1 0

Table 2.3: Hamming(7,4) table for error detection

2.2.2 Hamming(7,4) Error Detection

In the error detection and correction process, first assuming the seven-bits Ham-
ming(7,4) code 0111100 which is encoded by even parity in Table 2.2, go through a
noise channel, neutral to 1 and 0. The received code is transmitted as 0111110 showing
in Table 2.3, one error occurs at position d6.

The knowledge of p1 locates at d3, d5 and d7, then the parity check equation of
(p1, d3, d5, d7) is in equation 2.1.

(p1, d3, d5, d7) |2= (0, 1, 1, 0) |2= 0 (2.1)

So p1 = 0 is correct. Likewise, which has been elaborated in the previous section,
hence p2 = 1 and p4 = 1. Then a string from the sequence of (p4p2p1) is (110).
Hamming says that this particular string is in binary format to inform about the location
of error bit which needs converting to decimal. So (110) in binary is equal to 6 in
decimal. Then the position of error bit is sixth in the sequence, i.e. d6 in the Table 2.3.

2.2.3 Hamming(7,4) Limitation

Hamming(7,4) is an extraordinary method to detect or correct error in data piece. How-
ever, it has also limitations that it is able to either correct error one-bit error, nor detect
one-bit or two-bit error, which means for instance in Hamming(7,4) that Hamming can
merely handle less than or equal to two errors in 7 bits. If there are more than two error
bits occurring, the Hamming(7,4) becomes worthless. Otherwise, it can not distinguish
between single-bit errors and two-bit errors, so it will treat them identically, i.e. it will
think that there is only one-bit error which is going to result incorrect decoding result in
two-bit errors case.

2.3 Digital Signal Processing

Waves, like light, sound or heat, are invisible, but they can be felt, heard, or seen in some
way. The preservation of a wave or a signal is a prerequisite before it is visualized for
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Analysing/
Processing

Figure 2.2: Analog-to-Digital conversion

such as analysing and researching purpose. Transducers are an important role converting
the signal from a form to another which make the preservation process possible.

2.3.1 Analog-to-Digital Converting Process

Microphones and speakers are common transducers in audio context, they transduce,
convert and transfer the sound wave.

Taking advantage of Pulse-code modulation (PCM) a sound wave
through transducer can be represented in digital manner, an audio signal.

Under audio or voice generating, sampling and processing context, sampling fre-
quency stands for the amount of samples per second, commonly from 300Hz to
348kHz. The higher sampling frequency is, the better quality sound has, horizontally.
Bit depth is the resolution of each sound sample vertically, which is commonly met at
8-, 16-, and 24-bit depth. Often the bit depth shows up with its data format together, e.g.
integer, float, that is how the hardware processes and stores the input data of audio.

For instance, a piece of raw monotone with duration of 1 second is created in
11025Hz and has a 16-bit depth, then the amount of data volume is in the following
calculated by equation 2.2 that represents a lower-quality PCM though.

duration× samplingrate× 2Bytes = 1second× 11025Hz × 2Bytes

= 22050Bytes (2.2)

In equation 2.2 monotone times 2 bytes for each sample, stereo times 4 bytes for
each sample.

Aiming to this thesis, on the playing side a NAO robot plays the mono sound gener-
ated in 11025Hz that has a sample format of signed 16-bit in Little Endian byte order.
On the other side one NAO robot records in this manner as well but in 44100Hz for
avoiding Aliasing phenomenon due to Nyquist-Shannon Sampling Theorem.
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2.3.2 Nyquist-Shannon Sampling Theorem

The most important theory of signal preservation or sampling is Nyquist-Shannon Sam-
pling Theorem, also called Sampling Theorem. A continuous-time yet band-limited
signal x(t) and its equally spaced samples are in equation 2.3 where T is period.

x(nT ), n = 0,±1,±2, . . . (2.3)

X(w) = 0 (2.4)

and
|w| > wmax (2.5)

The Fourier transform of this signal is zero in equation 2.4, wherewmax is the highest
frequency, which means out of some bands all are zero.

Then under the conditions, if the sampling frequency is higher than double original
signal frequency, the original signal x(t) is uniquely recoverable.

2π/T
.
= wsampling > 2wmax (2.6)

Sampling theorem is a mechanism for representing a band-limited yet continuous-
time signal by a sequence of samples in time domain which is a discrete-time signal. It is
also an approach for avoiding aliasing by sampling procedure, because if aliasing occurs
then the original signal can not be restructured. Set in a simpler way, if a reconstruction
of a signal is desired, for sampling it and reserving it a minimally twice higher sampling
rate must be adopted. For instance, a sound is generated at sample rate of 11025Hz, for
a successful reconstruction it is sampled at least using a common 32000Hz rate that is
bigger than 2 ∗ 11025Hz.

2.3.3 Filter Function and Butterworth Filters

Filter function is a significant component function in DSP, a well-designed filter can
allow single or bunch of frequencies to pass through, while blocking or attenuating the
other unwanted.There are many filter types, such as Low Pass Filter (LPF), which is
only permitting low-frequency signal under a specific boundary to have the easement of
the filter. High Pass Filter (HPS) blocks low-frequency signal than its cutoff frequency,
as well as Band Pass Filter (BPF) that is capable to let signals within a certain frequency
band or selected range which is named as Bandwidth fall in and through.
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ejwat ejwatH(w)Frequency 
Response

H(w)

Figure 2.3: Generate Butterworth Filter Function. A frequency impulse ejwat as input
imports to a frequency response htb(w), the output is the convolution of them.

Butterworth filters are a relatively simple but also substantially useful filter class. Its
response frequency is monotonic. An ideal Butterworth BPF can be formulated as the
adjacency equation 2.7, N indicates the order.

|B(jw)|2 =
1

1 + (jw/jwcutoff )2N
. (2.7)

In Figure 2.4 four obvious conclusions can be drew that

1. the bigger the N is, the sharper or steeper the filter edges are, and drop off more
quickly and attenuates more in stop-bands,

2. the preserved frequency range is becoming narrow at the top of the filter curve,

3. all filters go through two same points,

4. high order filter, such as order = 9, becomes unstable and also requests high
computation.

By design a Butterworth Band Filter the cutoff frequencies could be cut clean by
rational high order Butterworth filter. In Figure 2.4, by increasing the order of filter,
the edge is getting closer to the cutoff frequencies, which in this case are 1000Hz and
3000Hz. But there is also a drawback as shown in Figure 2.4, when the order decreases,
the passband is getting narrower in particular on the top of curve, then if broad stop
bands are required, which implies that the accuracy on the pass band will lose, while
the stop bands can be comprehensively covered at the same time. Assuming 1000Hz

and 3000Hz are the corner frequencies, i.e. cutoff frequencies, so the frequencies in the
range from 1000Hz up to 3000Hz remain which are in the bright area in Figure 2.5,
others will be cut at the meanwhile.

In order to design a practical Butterworth filter which could maintain the specifica-
tions of high order Butterworth filter, i.e. the accuracy on the passband and the sharper
cutoff frequencies, and also has the characteristics of low order Butterworth filter, e.g.
broad stop bands, hence a transition area is introduced. The transition area works like
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Figure 2.4: A Butterworth Band Pass Filter with 1000Hz and 3000Hz corner frequen-
cies
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Figure 2.5: A Butterworth Band Pass Filter with 1000Hz and 3000Hz corner frequen-
cies (cont.)
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Figure 2.6: The processes of the construct of a continuous-time signal from a discrete-
time signal [16]

a buffer between pass bands and stop bands. When 1000Hz and 3000Hz are the de-
sired corner frequencies, then the stop bands are smaller than 1000Hz and bigger than
3000Hz respectively, the stop frequencies have to be a bit wider than pass bands.

2.3.4 Windows and Window Function

In the reconstruction process of a discrete-time signal and as well as in design for Finite
Impulse Response (FIR) filters the window function is essential. The window handles
signal in time domain, and the signal responds the window function in frequency do-
main.

A signal with finite duration on the time domain comes out after sampling procedure,
however Fourier Transform is a periodic function and valid from−∞ to +∞. The basic
idea to analyze a discrete-time signal is that, a finite discrete-time signal acts as a peri-
odic signal and repeats in at least Nyquist frequency to avoiding aliasing. Then it can
be treated as an infinite signal and analyzed in frequency domain using Fourier Trans-
form. The window transforms the finite signal into periodic, then the window function
generates coefficients of a desired frequency response and evaluates, at last filters out
unwanted, that makes observation and analysis of an infinite signal at a particular time
spot possible. Figure 2.7 shows different window types.

Among them Hann Window 2 is a versatile window, so it is chosen for assisting with
LPF for signal recovering. As the Signal-to-Noise Ratio (SNR) is high, the better filtered
result is gained, so the window function will be deployed after Butterworth Filter when
the sound environment is intricate.

2.4 BeepBeep Ranging Method

The first present of BeepBeep Ranging System [17] appeared in 2007 using very basic
hardware, two commercial cell phones at that time, for audio-based measuring approach

2in Figure 2.7 Hann Window is also known for Hanning Window.
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Figure 2.7: Different windows with 100 samples length
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Figure 2.8: Event sequence of BeepBeep Ranging Method

to calculate the distance between them. This approach is not only isolated from hard-
ware characteristics and also gives out high-accurate ranging result. It covers three
techniques, two-way sensing, self- recording and sample counting. Two mobile phones
play a specially designed sound piece with an obvious peak in it that refers as the “beep”
sound, one after one. The arbitrary time span between two “beep”s can not affect the
ranging accuracy at all.

The BeepBeep ranging process can be simplified as in Figure 2.8 that mobile phone
A plays a “beep” and receives it at TA1 according to the internal time of mobile phone
A, and after an arbitrary time elapsing mobile phone A receives another “beep” emitted
from mobile phone B at local time TA2. The mobile phone B receives a “beep” from
A at time TB1, and after a while it plays a “beep” sound and receives it at TB2. Besides
both have the same sample rate of R sample per second, the sound propagating speed
is C meter per second. After exchanging the information about T , the distance between
mobile phone A and B is computed by the equation 2.8 where K is the sum of the
distances for both mobile phones from microphones to speaker.

D = C × 1

2
× ((TA2 − TA1)− (TB2 − TB1))/R +K (2.8)

The most substantial advantage of this ranging method is that BeepBeep is totally
independent of synchronisation, time stamp and all potential delays.
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Figure 2.9: An illustration of TDoA model

2.5 Time Difference of Arrival (TDoA) Localization Al-
gorithm

Time Difference of Arrival (TDoA) localization technique, also known as hyperbolic
localization algorithm, is one of the most common localization techniques. Thanks to
its high accuracy and facilely implementable method it has been broadly employed in
military and marine affairs such as LORAN [7] in World War II. Nowadays it is also
for commercial applications, thereof the benchmark localization solution, the world-
wide navigation system Global Positioning System (GPS) using TDoA of signals from
multiple synchronised satellite-based transmitters is the most well-known instance.

In humanoid robot GPS is a reachable solution as well, only a extra module can take
all charges for localization task, while in RoboCup hardware modifying and changing
in NAO robot are not allowed. Regarding to the limitations on the rule of SPL [18], an
appropriate localization algorithm, Time Difference of Arrival (TDoA), for matching the
default NAO robot hardware configurations and actualising the acoustic self-localization
for RobotCup is presented.

2.5.1 General Time Difference of Arrival (TDoA) Algorithm Model

Assuming that an unknown node marked as i in colour red in Figure 2.9 is positioning
at (xi, yi) in a 2D coordinates system. The node i transmits a signal which is received
by multiple fixed nodes or vice versa, in this case three nodes stay steady, namely a, b
and c. Figure 2.9 illustrates the TDoA model.
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Due to time from node i to these three nodes a, b and c, the arriving time are sepa-
rately known, tai, tbi and tci. Besides a constant v is the signal propagation speed, so a
formula derived from all conditions is 2.9.

∆tab = |tai − tbi| = |rai − rbi|/v (2.9)

So:

∆tab × v = ∆r (2.10)

Because:

rai =
√

(xa − xi)2 + (ya − yi)2 (2.11)

rbi =
√

(xb − xi)2 + (yb − yi)2 (2.12)

This ∆r gives the hyperbola which the node i must lie on, according to the hyper-
bolic function can then gain an expression 2.13.

∆r =
√

(xa − xi)2 + (ya − yi)2 −
√

(xb − xi)2 + (yb − yi)2. (2.13)

Due to equation 2.10 then the difference between a and b is calculable in equation
2.14.

∆tab =
1

v
[
√

(xa − xi)2 + (ya − yi)2 −
√

(xb − xi)2 + (yb − yi)2] (2.14)

Similarly, we have:

∆tbc =
1

v
[
√

(xb − xi)2 + (yb − yi)2 −
√

(xc − xi)2 + (yc − yi)2] (2.15)

Now the xi and yi are calculable in combining 2.14 and 2.15.

2.5.2 Limitation of Time Differences of Arrival (TDoA)

Every algorithm has its limitations, TDoA is not an exception. These prerequisites in
List 2.5.2 beneath have to be met before TDoA calculation for an unique localization
estimation.
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Figure 2.10: Hyperbola positioning

• 3 robots with known positions are required for 2D at least, whose relationship has
not to be collinear,

• time synchronisation between signal receivers,

• at least one direct propagation path exists from unknown to the
knowns [19], otherwise the refections or/and echoes arise a bias estimation
result.

2.6 Chapter Summary

This chapter referrals mainly the correlative methods and techniques within the scope
of this master thesis, which are in the list beneath.

• Introduced Binary Frequency-shift Keying (BFSK) and Audio Frequency-shift
Keying (AFSK).

• Introduced Forward Error Correction Technique, provided an overview encoding
process and error detection process of Hamming(7,4) Code.

• Elaborated how to sample an infinite yet band-limited signal, especially an audio
signal and two common Digital Signal Processing functions, the Filter Function
and Window Function.

• BeepBeep Ranging Method, the functional equation and the advatage of this
method .
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• Introduced the TDoA localization algorithm with the solving processes and listed
the preconditions for a successful TDoA localization estimation.



Chapter 3

Design of Acoustic Self-localization

A robot broadcasts UDP packets embedded its ID number via WLAN, as the robots
receive the UDP packet and begin reading audio raw data from steam immediately. The
robots compose their positions in the AFSK signal, then the robots begin recording a
specific number of audio samples and play AFSK in sequence. Those recorded audio
samples are sliced into small pieces by sound detecting when the sound is loud enough
contrasted with the background noise. Robot determines the peak of each slice of audio,
demodulates the AFSK and decodes the information insetted in audio, afterwards sends
its positions and the detected onset information per UDP package.

The major functions of audio localization in Figure 3.1 will be brought out in time-
line in this chapter.

3.1 Audio Frequency-shift Keying (AFSK) Generation

Figure 3.2 illustrates how to generate a sound piece embedded location coordinates in-
formation using FSK. To increase the efficiency of information transmission with audio,
utilising limited duration of the sound piece to send more data, as well as a high resolu-
tion are wished for RoboCup utility, thus using short information encoding approach is
more reasonable. Conventionally an ASCII character is represented by seven-bit code,
that is the most well-known character encoding standard in the world. But it is quite re-
dundant for audio communication during RoboCup gaming, due to that it contains many
symbols and distinguishing letter in lower case or upper case. Especially for actualising
a robot self-localization system that there is no necessary to send many characters. Only
few things we do care about for the position calculation, such as the position coordinates.

1ETOA: Elapse Time of Arrival [17]

23
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Figure 3.2: Audio FSK generating process
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The information sent by AFSK is organised by the sequence of (roboti, xi, yi, zi)

in Figure 3.2. Since the error occurs in playing, propagating also in recording pro-
cesses, the tail part information could not be wholly decoded sometime. Therefor more
interested information should be assigned forward. If the AFSK is decoded faulty, a
information exchanging per UDP package during the RoboCup is still possible. If zi,
the information about the height of robot according to different postures, such as ly-
ing, crunching, standing, is somehow undecode-able, which means that the information
about height is missing, at least using the 2D position information a localization esti-
mation is still feasible, although the accuracy is decreased when the microphones and
loudspeakers in robots are not on a same plane.

3.1.1 Baudot Code

Baudot Code [20] is a fixed-length character encoding invented in 1870. It needs five-
bit to represent a letter or a number, the most important is that there is no prepend and
append. Whereas in Baudot Code the lower case and the upper case are not distinguish-
able, that means that Baudot Code is able to represent only one case, either uppercase
or lowercase. It has two shift keys, Letter Shift and Figure Shift originally, and they are
also treated as Space. For instance, when Letter Shift is activated, the following bits will
be processed in Letter Domain, until the Figure Shift is met.

3.1.2 Audio Frequency-shift Keying (AFSK)

The microphones of NAO robot have a frequency range from 150Hz to 12kHz [21],
the appropriate frequency range in AFSK should also belong to part of it. The nominal
carrier frequency is “halfway between the mark and space frequencies” which is brought
out in reference [14]. Carrier frequency is calculated in the equation 3.1.

fcarrier = (fmark + fspace)÷ 2 (3.1)

Regards to the characteristics of sound and to pass most peoples’ feelings in order
to deploying this feature in RobCup competition obeying the rule book [18], 2000Hz

as the carrier frequency is chosen, and the deviation is 1000Hz, an element length of 20

milliseconds i.e. 50 Baud Rate is taken to guarantee a productive AFSK communication
thusly.
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3.2 Sound Onset Detection

A sound wave or a sinusoidal wave can be featured by four properties, they are fre-
quency, amplitude, speed and direction mathematically. In reality, to sound wave de-
tecting, the speed of sound is a certain constant in a loose medium. Besides to detect the
direction of sound only if the density of microphones is high. Among them the easiest
way to detect a sound wave is setting an appropriate threshold according to different
detecting strategies and finding the pitch, such as in the frequency domain or amplitude
or power changing in the time domain. Basically there are four roads to detecting the
onset of sound.

• Calculating the Root Mean Square (RMS).

In statistic science the RMS is generating a mean of a series number in small
chunk to approximate the tendency of data. Under electronics or acoustics the
RMS involves power and is a method for calculating the sound pressure level
(SPL) or representing the voltage of a signal with the following formula 3.2.

xrms =

√
1

n
(x21 + x22 + ...+ x2n), n ∈ (x1, x2, ..., xn). (3.2)

• Calculating the peak value for sound amplitude or the Sound Pressure Level
(SPL).

For instance, a piece of signed 16-bit integer monophonic sound. On the
recording side the signed 16 bit integer monophonic sound range is between
[−32768,+32767], so that the highest and the lowest number which can be rep-
resented in 16 bit monophonic sound are +32767 and −32768. The bigger the
number is, the higher the power of pressure of sound is, hence the integer de-
scribes the amplitude of the sound or audio inherently. The normalised amplitude
can be produced by the equation 3.3, that reveals the ratio of magnitude changing.

ratio = |sample| ÷ 32768× 100% (3.3)

This method is also capable of setting environment noise level, acting as a basic
threshold to detect the desired sound.

The Figure 3.3 shows a sudden sound happening after a slice of silence, a series
acute energy/power changing happening along the Y -axis.
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Figure 3.3: Plotting of a mono sound

• Calculating the frequency.

In a noiseless environment condition or analysing an original soundtrack, an ap-
propriate frequency threshold is exactly the sound frequency itself, which is ideal.
Nevertheless the spectral leakage takes place in FFT process, that the wanted fre-
quency is mixed with other lower or higher frequencies, so it shifts in reality.
Hence the frequency detection prefers a range than a signal point.

• Calculating the cross-correlation for time shift of a signal.

Measuring similarity of a signal to the other is an effective approach using cross-
correlation when the detected signal is foreknown. The onset of known signal in
an unknown series is located at their peak convolution. But this effective approach
is inefficient with limited computation power.

As mentioned in the Chapter 1, an ATOM Z530 1.6 GHz CPU [13] planted in NAO
robot has really limited capacity, and RMS requires relatively intensive computation for
long audio data current as well as the Sound Pressure Level (SPL) calculation when
the audio I/O is heavy. Thus, a peak detector for sound detection and cross-correlation
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algorithm as a matched filter to calculate the real sound onset in the detected sound piece
will be deployed.

3.3 Recording and FSK Demodulator

This section is going to present recording, signal reconstruction and actualising a FSK
demodulator.

The NAO robot opens microphone streams and begins detecting sound after setting
an amplitude threshold of environmental noise. As long as it hear a sound it starts
recording. At the meanwhile all 6 robot play AFSK signal one by one.

• Sampling/Recording

The main theoretic part of sampling theorem and PCM data format etc has been in
Chapter 2 exhibited. The bit depth is the resolution of sound alike, the sample rate
represents the quality of sound. The sample rate on the recording side needs to
be higher than twice of sample rate on the playing side, which ensures no aliasing
phenomenon.

Those upper lines reach a conclusion that if on NAO the playing side plays the sig-
nal in sample format of signed 16 bit mono sound in Little Endian and 11025Hz,
on the other side one NAO robot records in this manner as well but in higher sam-
ple rate. In the thesis the AFSK signal is played at 11025Hz, on the recording
side the recorded AFSK signal is sampled at 44100Hz.

• Butterworth Filters

In previous section 2.3.3 the main features of Butterworth BPF have been broadly
filed. In the Figure 2.5 all the filters in different orders pass through two same
points, which make two orthogonal lines to the X − axis standing right on the
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Figure 3.5: Testing results of different Butterworth Filers under complicated sound en-
vironment

corner frequency points. It can be determined that the two special points are
affecting immediately the performances of Butterworth filters in essence.

For an ideal Butterworth BPF with the cutoff frequencies 1000Hz and 3000Hz

and a sample rate of 44100Hz the two dots which refer the maximum loss in the
pass bands (dB) and the minimum attenuation in the stop bands respectively, can
be calculated by the next two equations 3.4 and 3.5.

δpassband(dB) ∼= 20 log10(1 + 2ω), ω = 2πfpassband (3.4)

δstopband(dB) ∼= −20 log10(2ω), ω = 2πfstopband (3.5)

Not only the BPF, also the HPF and LPF are profitable depending on the environ-
ment. The testing results of Butterworth filters under a real yet noisy condition are
shown in the Figure 3.5, the original signal frequencies are 1000Hz and 3000Hz,
playing in 11025Hz and recorded in 44100Hz.

In the right column in Figure 3.5 comparing to the original sound locating on the
left upper corner, the filtered signal shows very clear edge and intervals. But the
plotting lying on the left bottom shows differently, it has thorny waveform and
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the noise apparently is magnified. Therefore, different filters perform differently
depending on the noise types.

• Smoothing

Smoothing is another regular noise reduction process. Many smoothing functions
are available that can filter out environment noise or other rapid phenomena, e.g.
minor distorted sound. The most common algorithms, for example moving aver-
age calculating the average value of successive values and LPF. In this thesis the
Savitzky-Golay filter [22] is engaged which ought to hand out more reasonable
result in DSP without making big damage in signal for increasing the SNR.

• Reconstruction

This part could be split into three subprocesses. First, differentiating and then
envelope detecting, finally a LPF with window function.

Differentiating can construct a signal which approximates the waveform of the
original in the time domain. If the SNR is high, after differentiating a rectangle
waveform in the frequency domain can be obtained.

In the envelope detecting process the Hilbert Transform is usually engaged in
order to detect the signal envelope, in another word, the main goal of this process
is aiming to draw the upper outline of the amplitude of the sampled signal in the
time domain, and it only responds to the positive part.

In the FSK demodulating or signal recovering the final step is a LPF to recover
or reconstruct the original signal, which is designed to correspond to the original
signal’s baud rate to remove noise at frequency domain.

3.4 Localization

According to SPL Rules [18], each team is allowed maximally 6 players, which means
that ideally, there are 5 known positions available for single unknown, including a coach
robot seating on a table locating out of the soccer field.

For a successful localization by involving TDoA algorithm, 3 known positions for
planar and 4 positions for stereo are required which is also a prerequisite. Otherwise,
during gaming, the robots could behave diversely due to the decision they make or other
issues, then its variant posture can be such as stand, walk, lie, crouch or fall or these
postures in progress. Whereas sometimes the number of gainable known positions is
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smaller than five, even smaller than three. To increase the robustness and reliabilities of
localization the algorithm should be capable to handle both 2D and 3D situations.

Almost all existing localization algorithms contain two steps:

1. measuring the geographic or geometric data from limited known positions,

2. computing the unknown location according to the measured information.

At the first step various approaches are developed to be capable to inform the dis-
tance between unknown and known, e.g. signal-strength-based approach Received Sig-
nal Strength (RSS); time-based approach Time of Arrival (ToA) and Time Difference
of Arrival (TDoA); angle-based approach Angle of Arrival (AoA); frequency-based ap-
proach Frequency Difference of Arrival (FDoA) etc. They could match diverse tech-
nologies and applying scenarios.

At the second step, to produce an unambiguous estimation result of an unknown
position a lot of mathematic and statistic methods have been developed in calculation
processes to produce a trustworthy localization estimation result, for instance conven-
tional triangles approaches, Least Squares (LS) and its variable forms, Gauss-Newton
Interpolation approaches (i.e. Taylor Series), Maximum Likelihood, Kalman Filters and
so on, to address varying relationships between knowns and unknown in different sce-
narios. But all of them require that the amount of known is greater than the amount of
unknown.

Time-based approach is the a feasible method for acoustic self-localization for au-
tonomous soccer robots. Comparing to ToA, TDoA algorithm works without time syn-
chronising between sender and receivers to inform of the precise sending and receiving
time, it needs only acquiring the receiving time. However, as in Chapter 2 mentioned
that it requires the synchronisation among receivers side, so there is no sending time in-
formation contained in the AFSK sound, as a result the duration in creating and playing
even decoding AFSK is shortened, and also the number of errors on AFSK demodulat-
ing could be decreased properly.

In the Chapter 2 the TDoA algorithm is introduced. However the hyperbolic equa-
tion group is nonlinear and difficult to be solved conventionally. Many foregoing re-
searchers have devoted to providing various ideas and methods for providing solution of
the equations in different complexity and accuracy level to cover different demands.

Every algorithm has its own features, e.g. the Taylor Series [23] offers more accurate
location estimation when the noise level is high, otherwise it is able to cooperate with
other approaches and to achieve more reliable estimations. On the other hand it is an
iterative method which is intensive computing and requires an initial guess iterated in the
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calculating process, thus the quality of the initial guess is affecting the estimation result.
Fang’s TDoA algorithm [24] is limited within 2D and an extra piece of information
could not improve the final estimation result. The LS group approaches, such as Least
Square (LS), Total Least Square (TLS), Two Step Least Square (TSLS) and Weighted
Least Square (WLS) are comprehensively deployed in position estimation algorithms
due to the easy implementation with reasonable accuracy and cheap computation cost.
So does the Maximum Likelihood (ML) approach.

Hence the TLS and one of the famous ML approaches are shown in this section,
both of them are capable to deal with 2D and 3D position estimation.

3.4.1 TDoA Estimation based on Total Least Square (TLS)

From the paper [25] the formula 3.6 is known from which the position estimation results
come out.

p =
1

2
(ATA)−1ATk (3.6)

where

p =

xy
r1

 (3.7)

A =


x′2 y′2

r2,1
2

x′3 y′3
r3,1
2

...
...

...
x′n y′n

rn,1

2

 (3.8)

k =


k′2 − r22,1
k′3 − r33,1

...
k′n − rnn,1

 (3.9)

In 3.7, (x, y) is the position of the unknown node and r1 is the distance from the un-
known to the reference node marked by number 1, and rn,1 can be produced by equation
2.13 in Chapter 2. The equation 3.8 about A contains known information relating to the
unknown.
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x′n = xn − x1
y′n = yn − y1
k′n = x2n − x21 − y2n − y21
n = 2, 3, . . . , n.

(3.10)

3.4.2 TDoA Estimation based on Maximum Likelihood (ML)

The ML algorithm from reference [26] for TDoA is a closed-form non-iterative solu-
tion, for 3 arbitrary nodes with known positions and an unknown in a system, so the
estimation of unknown with 3 nodes given by Chan is calculated by equation 3.11.[

x

y

]
= −

[
x2,1 y2,1

x3,1 y3,1

]−1
× {

[
r2,1

r3,1

]
r1 +

1

2

[
r22,1 −K2 +K1

r23,1 −K3 +K1

]
} (3.11)

The information about ri,1 is calculated by equation 2.9. The item r1 is informed by
equation 3.12.

r2i = (xi − x)2 + (yi − y)2

= Ki − 2xix− 2yiy + x2 + y2
(3.12)

Where
Ki = x2i + y2i

i = 1, 2, . . . , n.
(3.13)

When the system obtains more than 3 known positions, then it becomes overdeter-
mined which is the number of known information much greater than the unknown i.e.
as the known nodes are 4 at least. This ML is contracted by the next two steps.

1. Per weighted linear LS an initial solution is produced.

2. By taking the former result as a piece of extra information and substituted into
WLS an ameliorated outcome is brought out.

Letting the vector about the unknown be za = [zTp , r1]
T where zp = [x, y]T , and r1

is the prior knowledge.

za = arg min{(h−Gaza)
TΘ−1(h−Gaza)}

∼= (GT
aQ
−1Ga)

−1GT
aQ
−1h

(3.14)

The first estimation is given by equation 3.14, where
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h =
1

2


r22,1 −K2 +K1

r23,1 −K3 +K1

...
r2M,1 −KM +K1

 (3.15)

Ga = −


x2,1 y2,1 r2,1

x3,1 y3,1 r3,1
...

...
...

xM,1 yM,1 rM,1

 (3.16)

.

The K in equation 3.15 is equal to the equation 3.13. The covariance matrix Q, for
example a system containing 5 nodes, 4 known and 1 unknown which is proposed in
[26] can be constructed by matrix 3.17.

Q =


1 0.5 0.5 0.5

0.5 1 0.5 0.5

0.5 0.5 1 0.5

0.5 0.5 0.5 1

 (3.17)

And the equation 3.18 is a LS equation about za, then to proceed to second WLS
process by using the perturbation approach which is similar to the first part, but the
covariance matrix contains information about the first outcome.

z
′

a = (G
′T
a Θ

′−1G
′

a)
−1G

′T
a Θ

′−1h
′ (3.18)

Θ = c2BQB (3.19)

c is signal propagation speed.

B = diag{r02, r03, . . . , r0M} (3.20)

This algorithm computes with respect to the first arrival, which means that all data
compare themselves with the first one.
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Figure 3.7: Maximum of differential peak index on right and left microphones

3.5 Robot Orientation Estimation

Robot’s orientation belongs to a part of robot localization task. Nevertheless through
mono track the orientation of robot can not be determined. Taking two channels of
different amount samples information, the orientation of robot becomes calculable.

3.5.1 Sample Measurement Method

Assuming a sound is emitted by speaker of I . R and L denote the both side microphones
of the NAO robot. The positions of I is known. And existing a node A is the real
location of a robot, it is calculable or known, then the positions of two microphones are
accessible as well with the orientation of robot.

Figure 3.6 shows that the robot faces to a sound emitter straightly, then robot records
the sound from I , the arrival time to microphone L equals to the time to microphone
R, hence the differential arrival time between microphone L and microphone R is 0.
Figure 3.7 illustrates the maximal difference between sound arrival time of R and L,
and if microphone R is closer to sound emitter, then the arrival time to R is smaller than
L’s.
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Figure 3.8: Simplified robot orientation calculation model

So,
∆t = (IR− IL)/v = RL/v (3.21)

where v is the speed of sound, and RL is in Table 1.1. In case of Figure 3.6 LR is
perpendicular of the LR in Figure 3.7. The distance of R and L is 0.1212 meter, which
is roughly equal to 15 samples by sampling rate at 44100Hz.

RL = 0.0606 + 0.0606 = 0.1212 (3.22)

samples = 0.1212× 1

v
× 44100 ≈ 15 (3.23)

Hence the angle difference of each sample is ±6◦ computed by equation 3.24.

90◦ ÷ 15samples = 6◦/sample (3.24)

If θ is the desired angle for representing the orientation of robot. Then the simplified
robot orientation calculation model is transferred to the Figure 3.8.
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Figure 3.9: Simplified robot orientation calculation model (cont.)

In Figure 3.8 position information about I and A are given, additionally |AL| =

|AR|, otherwise |AD| ⊥ |LR| and |AC| ⊥ |BD|. So the triangle ABC is fully known.
The |LR| form |L′

R
′| changed ∠θ

′ .

∠θ = 180◦ − ∠ADC

= 180◦ − (180◦ − 90◦ − ∠CAD)

= 180◦ − {180◦ − 90◦ − (90◦ − ∠θ
′ − ∠BAC)}

(3.25)

∠θ = ∠θ
′
+ ∠BAC (3.26)

sin∠BAC =
|AC|
|AB|

(3.27)

Now the ∠θ betweenX-axis and the line through pointsA andD is computable, but
a line has no direction, hence the orientation of robot at point A owns two possibilities,
∠θ and ∠θ + 180◦. Due to |IR| < |IL|, the orientation of robot is ∠θ.

Another parallel situation shown in Figure 3.9. The difference of samples between
L

′ and R′ in colour and the original case in colour red is same, but the ∠α is not equal
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Figure 3.10: Simplified robot orientation calculation model for sample measurement
method

to ∠θ. So the orientation of robot has two solutions, one is from equation 3.26, the other
is from equation 3.28.

∠α = 180◦ − ∠D
′
AB − ∠D

′
BA

= 180◦ − (90◦ − ∠θ
′
)− (180◦ − ∠ABC)

= ∠θ
′
+ ∠BAC − 90◦

(3.28)

While this ritualistic method is strongly depending on the geometric relationship
between the sound receiver and the sound emitter. Hence the following solution is pro-
posed.

Two arbitrary nodes are existing in a system. Lining up the two points which is
referring the case when the difference peak index in sample is zero between two micro-
phones R and L. The line has minimally one intersection (xA, 0) on X-axis or (0, yA)

on Y -axis. The ∠θ
′ in Figure 3.10 is same as the ∠θ

′ in Figure 3.8. The line CB is
around point A rotating by a angle of ∠θ, then point C ′ is determinable and B′ as well.
Now ∠θ is estimable. Because the direction of robot is orthogonal of the line of CB,
the orientation of robot is known. If the right microphone receives signal first, then the
orientation of robot is counterclockwise of 90◦ to the angle θ, otherwise clockwise.

Considering the microphone sensibility of NAO robot the range of angle needs en-
larging corresponding to each sample.
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3.6 Chapter Summary

This chapter included the main process of acoustic self-localization and introduction of
many techniques involved in this process.

The compact process contains basically five subprocesses.

1. Making the decision for sound sampling on both sides, playing and recording to
gain better audio quality for the AFSK demodulation process.

2. Comparing the strategies of sound detecting. Since the localization algorithm is
called TDOA, which is taking advantage of differences of arrival time of sound.

3. Generating AFSK with a 5-bit encoding method, Baudot Code with a forward
error correction technique, Hamming(7,4) for self-able-correction due to the in-
herent characteristics of sound propagating in the air with short duration but more
information.

4. AFSK demodulating process, involving various DSP components for denoising,
filtering and reconstructing processes, such as windowing function, Butterworth
Filters.

5. TDoA localization technique and its associating algorithms, Total Least Square
(TLS) and Maximum Likelihood (ML), they provide a computational advantage
with reliable estimation results as the noise level is relatively high.

6. An audio sample measurement method for robot orientation detection.
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Chapter 4

Implementation of Acoustic
Self-localization

This chapter documents every indispensable piece which might impact the main process
immediately and lead to failure or error.

4.1 Audio Frequency Shift Keying (AFSK) Modulation
and Demodulation

The first important process of acoustic self-localization for autonomous soccer robots
lays down to the audio communication exchanging information between robots. These
robots exchange information about their present position coordinates via AFSK signal.
Different languages are analogous to different encoding and decoding methods to human
being, while AFSK signal, a communicating method aiming to soccer robots, requires
encoding and decoding processes too. The techniques involved in the information en-
coding and decoding processes are discussed in Chapter 3 slightly. The AFSK signal
generating processes are illustrated in Figure 3.2, and among them the Baudot, Ham-
ming(7,4) techniques and FSK encoding process are briefly presented as well. In this
section more details about implementing AFSK demodulating processes and localiza-
tion are informed.

4.1.1 Hardware Driver and Python Audio I/O

As mention in previous chapter that 2000Hz as carrier frequency and
1000Hz as discrete frequency, since the inherent noise frequency generating by
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Figure 4.1: Recoding results contrast between normal and distorted sound

the fan in the head of NAO robot is 800Hz. By an overlap of signal and noise, the
original signal is hardly to be recovered. Although the high range frequencies are more
easily distinguished from environmental noise essentially, on the other hand high audio
signal can arise uncomfortable feeling or prickling in ears which is unbearable.

In report [6] the Austrian Kangaroos built a whistle detection system for controlling
game controller to begin or stop the game. In that a well-known audio framework named
Advanced Linux Sound Architecture (ALSA) is taken to drive the sound device in NAO
robot that is native embedded in NAO robot. There are also several ”ALSA for Python”
[27] projects available, e.g. PyAlsaAudio. But the testing of AFSK demodulating turns
out that the PyAlsaAudio causes distorted sound by playing AFSK signal in range from
1000Hz to 3000Hz. The received audio signal is impossible to be recovered, because
the original signal is destroyed on the sending side while playing which would have
been or closed to be noiseless.

In Figure 4.1 both plots shows a recorded AFSK signal sampled at 11025Hz and
2000Hz as carrier frequency and 1000Hz as discrete frequency. The first plotting rep-
resents the recording result on a MacBook Pro without any peripheral audio I/O devices
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using Audacity in 44100Hz sample rate and the original AFSK signal is played also
by Audacity. The second plotting shows the recording result on a V4 NAO robot with
ALSA in 44100Hz and 100% microphone sensitivity, besides the original AFSK signal
is played by a V5 NAO robot with 35% playback volume and holding a LOS distance
of 230cm between them. Both robots played and recorded signal monophonically.

Although this poor example might be unapproved in a thesis due to no restricted
attitude of scientific reaching, it is only in the charge of that we can be visually informed
from Figure 4.1 that the first plotting has a smoother envelope than the plotting beneath
it, and a lot of thorns around the sound track are in the second plotting figure, otherwise
by playing human hears cracking sound.

This phenomenon occurs very often, such as unstable electricity currents or because
of faulty speaker or microphone, or of other software or program issues, for instance,
driver or data format is unmatched to the hardware requirements.

Obviously on the hardware aspect, modifying and changing are not allowed accord-
ing to the clause in RoboCup Standard Platform League (NAO) Rule Book [18], au
contraire the software or program aspect, where the attentions are worthy to be paid
for. That is the reason why another audio I/O library is applied, PortAudio, in com-
bination with a Python package bindings for PortAudio audio input and output called
PyAudio, are recommend and imported in this master thesis, also implemented in the
sound localization prototype. AlsaAudio [27] is engaged at the same time.

A general signal can be formulated by:

y = Asin(2πft) (4.1)

where A is amplitude, f is frequency, t is time. Generating a sinusoid with Python
with matched data type of the signal is fundamental because “Sound format controls
how the PCM device interpret data for playback, and how data is encoded in captures”
[27]. There are two data formats in PCM, which are shown up with the bit depth, such as
16-bit integer, 32-bit float for signed or unsigned etc, evidently that float data type is able
to represent more details with endless number after the decimal point than integer data
type, especially meaningful for music or high-quality synthesised audio. If the bit depth
is too small, such as 4-bit and 8-bit that is also known as Chip tune which sounds tedious
and electric. Additionally, the high bit depth requires more memory and CPU capacity
to process the raw audio data. A tradeoff in this thesis is that the 16-bit unsigned integer
as playing and recording data format is used. Consequently the sinusoid signal needs
resetting the range of sample from [−1,+1] to others associating with the configuration
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of PCM before playing if it is required. For instance, resetting the range from [−1,+1]

to [−32768,+32767].

Listing 4.1: Denormalization for 16-bit data
1 import numpy as np

2

3 def denormalize(data):

4 return np.int16(data/np.max(np.abs(data)) * 32767)

4.1.2 AFSK Modulation and Demodulation

The AFSK modulation processes are illustrated in Figure 3.2, it is simulating a Voltage
Controlled Oscillator (VOC) that changes frequencies with regards to the input data. The
constructed signal is a cosine instead of sine. Corresponding to the Nyquist-Shannon
Sampling Theorem in Chapter 2, the sampling frequency has to be at least twice higher
than the carrier frequency, e.g. 11025Hz as carrier frequency, then the sampling fre-
quency is at least more than 22050Hz.

An example of a piece of information modulated in AFSK is shown in Figure 2.1,
the FSK signal is generated by Python Script locating in Appendix A.

The FM type demodulation process is discussed in Chapter 3 engaging Butterworth
Filters and window function. The recommended processes for a FM type demodulating
in references [14, 28] are in the underlying list in sequence.

1. Band Pass Filter

2. Limiter

3. FM Discriminator

4. Low Pass Filter

5. Slicer

In this thesis every function mentioned in upper list is implemented and supple-
mented with other necessary functions, working in the sequence as following.

1. Limiter
Setting an environmental threshold for sound amplitude. In Chapter 3 four ap-
proaches for sound onset detection functions are present. i.e. RMS, amplitude-
based, frequency-based with their algorithms respectively and the matched filter.
And also pointed out that due to the limitation of hardware on NAO two of four
are implemented.
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Listing 4.2: Peak detection
1 import numpy as np

2

3 def getAmplitude(snddata):

4 # reading data from stream.

5 piece = np.fromstring(snddata, np.int16)

6 peak = np.max(piece)

7 amplitude = peak / 32768.

8 return amplitude

But first the audio data coming from stream need forming from raw audio data to
Int16. But the outcome cannot be used as a threshold for sound onset detecting,
because a single number represents nothing, while the arithmetic mean could be
referred to the characteristic of a series of numbers. Otherwise if keeping detect-
ing sound or detecting nothing in a row, then the threshold is too high or too low.
Hence the setting environment threshold must be processed periodically.

The process is modelled in Figure 4.2,

2. Butterworth Band Pass Filter
In Section 2.3.3 an introduction about Filter function and Butterworth BPF in dif-
ferent orders is given. In Figure 2.5 all functional Butterworth BPFs go through 2
points ideally. Sequentially in Section 3.3 the formulas 3.4 and 3.5 of calculating
the two points are brought out with testing results of corresponding designed But-
terworth BPFs in extraordinary complicated environment plotted in Figure 3.5.

3. Smoother
Savitzky-Golay filter.

4. FM Discriminator
A FM discriminator is usually made by a differentiator followed by envelope de-
tector. Nevertheless by testing and evaluating of this particular combination of
DSP functions, a poor performance of time-consuming aspect led the entire pro-
cess into numbing statue or system halted.

Profiling the AFSK demodulation process gives an overview of time consuming
by execution, that indicates that the program spends too much time on the enve-
lope detecting function using Hilbert Transform which demands intensive com-
putation on account of fast Fourier transform (FFT) and convolution, especially
when the length of signal is odd.

The strategy of solving this issue is taking a replacement function, instead of
Hilbert Transform an alternative approach for envelope detection is, first calculat-
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ing the absolute part of sampled signal and making the result goes through a LPF
which has an extreme cutoff frequency to gain the envelope, that is exactly the
final step forward to the reconstructed signal.

5. Low Pass Filter
LPF with Hann window.

6. Slicer
The mean of filtered signal as the indicator for making decision.

Exclusive of Slicer and Limiter, which is introduced in Chapter 3 in the section about
Sound Onset Detection, all functions have been wrapped in Python scientific packages
Scipy and Numpy.

4.2 TDoA Algorithms Implementation

A general TDoA algorithm model is established in Chapter 2 with calculating step, an
overview of different localization algorithms and particularly the time-based localiza-
tion algorithms for comparison is shown in Chapter 3. Among them two algorithms
for TDoA for solving a group of non-linear equations of hyperbola, TSL and ML, are
considered as implementation components for acoustic self-localization for autonomous
soccer robots.

4.2.1 TDoA Total Least Square (TLS) Algorithm Implementation

Beginning to form the TLS equation 3.6, p of equation 3.7 is desired and referring to
the position of the unknown node, matrix A in equation 3.8 has two parts, one part is
about the differences of distance between one node and others, the other part is about
the differences of distance of arrival.

Let the node named 1 be the reference node, because paper of [25] announced that
“all the TDoAs are measured with reference to the first reference node”, which needs
pointing out that the “the first reference node” is not the first arriving node or set in
another way, essentially, any node can be this reference node.

The first part is that all positions subtract the same reference node, i.e. the node
named as 1 located in (x1, y1), from equation 5.2.

rnr =
[
x1 y1

]
(4.2)
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rn =

x2 y2

x3 y3

x4 y4

 (4.3)

In the second part r2 is contained by equation 4.4, where v is the speed of sound.

rdoa =

toa2 − toa1toa3 − toa1
toa4 − toa1

× v (4.4)

Hence the final constructed matrix of A is in the next Python script.

Listing 4.3: Matrix A in equation 3.8
1 dim = np.shape(ary)-1

2 tdoa = ary[1:, dim] - ary[0, dim]

3 A = np.hstack((rn.T-rnr.T, 5e-1*rdoa.reshape(np.shape(tdoa)[0],1)))

Another important piece of equation 3.6 is the k, that is the sum of each position
squared and then subtracts the sum of the reference node’s position squared, and their
difference subtracts distance between them squared. Due to the equation 4.4, the squared
rdoa is early calculated.

Listing 4.4: rdoa and K in equation 3.9 for Total Least Square
1 rdoa = tdoa * v

2 rdoa_squared = rdoa * rdoa

3 K = (np.sum(rn * rn,axis=0) - np.sum(rnr * rnr, axis=0)) - rdoa_squared

The p is calculated only when the matrix of A is invertible in equation 3.6, which is,
only if the rk(A) = rk(AT ), such as in 2D localization scenario, the matrixA is (3×3),
likewise for 3D (4× 4), otherwise it could not hand out an estimated result.

But in many cases, an extra node could provide useful information that products a
more trustful estimation for localization algorithm. When matrix A is (m × n), and
all elements belong to a field, then the matrix A is decomposed as in equation 4.6 due
to Singular Value Decomposition (SVD) which is proposed in reference [25], hence
instead of inverting a non-invertible matrix in sometimes, calculating its pseudoinverse
of matrix A instead.

A = UΣV T (4.5)

A+ = V Σ+UT (4.6)
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In equations 4.5 and 4.6, Σ+ is the pseudoinverse of Σ, and ∗T indicates the transpose
of matrix.

So this complicated numerical computation process in Python is shown as followed
Python snippet and the estimation result is gained.

Listing 4.5: Calculating estimation of equation 3.6
1 estimation = 5e-1 * np.dot(np.linalg.pinv(A),K)

4.2.2 TDoA Maximum Likelihood (ML) Algorithm Implementa-
tion

In paper [29] the ML algorithms for 3 nodes and for more than 3 have been implemented
with detailed information and in a very traditional manner. There is no reason for a
redundancy in parroting. As well as in the Chapter 3 the elaboration of Chan’s ML
algorithm, many steps were omitted in order to draw a clear outline for the adjacent
improved implementation of the ML TDoA algorithm for more than 4 nodes.

As mentioned in Chapter 3, the ML TDoA algorithm contains 2 steps, first LS and
then WLS is involving the outcome from the fist LS that the process is very similar to
Two-Stage LS.

Usually the LS equation has the form of equation 3.6 and the implementing is pre-
sented in the pervious section for LS which is also pointed out that the pseudoinverse
could solve the least square problem, because sometime the LS can not hand out a result
if the matrix is not invertible. Therefor this implementing is also taking pseudoinverse
as first calculating for the LS about the constructed TDoA matrix, and then calculating
the WLS with convenience vector in a normal way. This improved algorithm in Python
shows faster feature.

Depending on the array named ary from Section 5.2.1.1, according to [26], the array
should be sorted by ToA first.

Listing 4.6: rdoa for ML
1 import numpy as np

2

3 n, dim = np.shape(ary)[0], np.shape(ary)[1]

4 group = ary[ary[:, dim].argsort()]

5 tdoa = group[:, dim] - group[:, dim][0]

6 rdoa = tdoa * v
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Gathering necessary knowledge for matrix 3.16.

Listing 4.7: Matrix in equation 3.16
1 D = np.hstack((self.group[:, :dim], rdoa.reshape((self.n,1))))

2 M = D[:, :dim]

3 G = D[1:] - D[0]

Constructing h in equation 3.15 and computing the first estimation from LS, and
extracting the error vector R0.

Listing 4.8: First LS estimation in ML and the error vector R0
1 r_squared = rdoa[1:] * rdoa[1:]

2 K = np.sum((np.multiply(M, M)),axis=1)

3 h = 5e-1 * (r_squared - K[1:] + K[0])

4 first = np.dot(np.linalg.pinv(-G),h)

5 R0 = first[-1]

Then constructing the covariance matrix Theta of equation 3.19.

Listing 4.9: Covariance matrix
1 theta = np.mat(np.diag((rdoa[1:] + R0) * v ** 2))

Substituting the matrix Theta in to the WLS equation 3.18 to get an ameliorated
localization estimation result.

Listing 4.10: Weighted Least Square for ML
1 EST = ((-G.T * theta.I * -G).I * (-G.T * theta.I) * np.mat(h).T).A.squeeze()

4.3 Chapter Summary

In this chapter all necessary details for fulfilling a successful implementation of AFSK
modulating and demodulating and code scripts for both TDoA algorithms, TLS and ML,
are completed. Many scientists and programmers give their wisdom and effort building a
solid foundation which is also within the researching scope of this thesis. While the spe-
cific design and implementation for NAO robot with a significant limitation of hardware
capacity, has its advantage, overwhelming the limited capacity on NAO and adapting
the Rules of RoboCup Standard Platform League. Many processes are redefined and
reimplemented with attentions on the feature of technologies compromising between
accuracy, reliabilities and time consuming.



Chapter 5

Integration and Evaluation of Acoustic
Self-Localization

This chapter elaborates experimental testing of the acoustic self-localization on NAO
robots, discuses different strategies for implementation and their performances about
accuracy, efficiency, drawbacks etc.

5.1 Audio Frequency-shift Keying Demodulating

The audio FSK demodulating shows satisfied robustness and reliability even under very
harsh conditions. The ameliorated AFSK demodulating process in Chapter 4 is speci-
fied. Due to engaging of 2000Hz as carrier frequency, the desired audio piece could be
free from being contaminated by human voice environmental noise and music. How-
ever, if the environmental noise level is low, i.e. high SNR, the Butterwort filter can be
omitted, since the followed Savitzky-Golay filter is capable to filter out the environmen-
tal noise in order to accelerate the demodulating process.

The difficult part is located after AFSK demodulating about how to extract interested
information from a large amount. Set in another way that the robot should know where
is or how to find the beginning of the real information to initialise decoding process.
Because of the BFSK combining the AFSK, there are only two possibilities, nether 1

nor 0. The simplest way is defining a specific pattern that the robot is able to explore the
pattern at first before decoding.

Otherwise the decision for cut duration/length of audio data for future processing
and analysing is also tricky. Since if the length of audio data is too long, the information
is easily to extract, while the robot is be overwhelmed by intensive computation in DSP.
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Or if the length of audio data is too short, the robot might miss important information
which is leading to non-decodable data.

An effective AFSK communication method is strongly depending on the distance
from signal emitter to signal receiver, although the DSP is capable to filter out interfer-
ences and amplify the filtered signal. Nevertheless the operational range of AFSK is
limited. If the volume is high, the AFSK is distorted, so that the signal is unrecoverable,
while the volume is low, the sound can not be detected. In testing, when two NAO robots
halt a distance within 2 meters with 70% volume the AFSK signal is demodulated. As
the distance increasing, the AFSK signal becomes useless. The demodulation of AFSK
is complicated in NAO robot V5 due to the EGO-noise generated by the fan in robot’s
head, since the SNR is tremendously low. If the signal is not strong enough in the fre-
quency domain, it is distorted by the inherent noise easily, if it has no strong energy for
propagating, it can not be detectable.

5.2 NAO Robot Self-Localization

To estimate an unknown location, two procedures must be completed which are also
pointed out in Section 3.4 that first measuring the geographic or geometric information
of known, and second computing the unknown with regards to the measured data. For
a normal TDoA estimation, as mentioned in List 2.5.2, one of the three preconditions
for a successful TDoA localization estimation is time synchronising on receiving side
which is addressing for the measuring task. The privilege of this approach is that the
distance between the unknown and known is not indispensable, only the differences of
distances are significant. Many uncertainties will contribute to this TDoA estimation
process negatively. Apparently there could be or is delay on sending and receiving
side or in synchronising process. When the sum of delays reaches millisecond stage, it
transforms an erroneous localization estimation more than 34cm.

5.2.0.1 Synchronisation and Sound Onset Detection

Sound onset detection is the most compulsory and important component before TDoA
localization calculating. Apparently synchronisation is an obstacle that has to be over-
come first.

There are several strategies to make robots synchronise together. Such as dancing
robots [30] used Server/Client topology to synchronise the movements of a swarm of
NAO robots. They cut the timeline into small spans for oscillator speed adjustment
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Figure 5.1: Master/Slave networking

which makes sure that all robots could dance simultaneously, even if some of them are
newly added or fell and then still could catch up later on. In that paper also mentioned
that “this kind of experiment has already been conducted by Aldebaran for the Universal
Exposition in Shanghai in 2010 with 20 robots. Their approach was to synchronise ev-
ery robots clock by using the NTP protocol, which is currently used by every computer
to synchronise its clock on the Internet.” Both cases are using NTP for clock synchro-
nising between robots, alike the local time synchronisation method of computer to get
precise local time. But the NTP protocol requires the connection to the Internet which
is impossible during the RoboCup. Alternatively using synchronising algorithms, such
as Berkley Algorithm or Round-Trip time measuring approach. They are workable on
this scenario, but both also take time to accomplish an algorithm round.

An adhoc time synchronising network, Master/Slave networking in Figure 5.1 is
deployed on trial. The coach robot as master broadcasts very frequently UDP packet via
Wi-Fi network with timestamp generated by its internal clock and the others receive and
take it as initial timing and then begin sound onset detecting.

Results and Conclusions

By testing the model illustrated in Figure 5.2 the limited capacity of NAO has been
fully taken in everything at a glance. The data processing speed is strongly constrained,
so that audio I/O can not be constantly digested. It causes I/O blocking often. Other-
wise receiving time stamp from master suffers long delay if the network has too much
to load, however clock synchronising needs frequent data exchanging. The sensitiv-
ity of embedded microphones restricts the accuracy and performance. Thus a stringent
estimation for sound signal arrival time is difficult to achieve. The inaccuracy level re-
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Figure 5.2: Implemented acoustic self-localization process with an adhoc time synchro-
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mains in milliseconds which is not precise enough for localization estimation within the
RoboCup field.

5.2.0.2 BeepBeep Acoustic Ranging System

The first BeepBeep Acoustic Ranging System is built in 2007 using commercial off-
the-shelf (COTS) devices like mobile phones, MP3 players. According to the paper
[17] the error level is controlled within 2 centimetres in range of more than 10 meters
[31]. Besides the BeepBeep Acoustic Ranging System is a pure software solution and
capable to handle the three aforementioned delay sources in Section 2.4 well, because it
does not ask for synchronisation and timestamps and the “elapsed time between the two
time-of-arrivals (ETOA)” is calculated by relative time clocks to estimate the ranging
value.

This ranging measurement method needs minimally 2 devices and both in recording
and playing statues, exchanging the detecting results for ranging calculation. The system
used peak detection and Cross-Correlation algorithm comparing the original signal to
the detected signal to evaluate the ETOA between two sound pieces emitted by two
mobile phones. If the SNR is high, a successful detection could be met.

Results and Conclusions
By testing this approach, two NAO robots hold a distance of 120cm roughly and

play signal one after one and record separately before they save the raw recorded WAV
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file locally. After analysing the two raw WAV files taking advantage of RMS mentioned
in Section 3.2, the error range remains within 2cm. The BeepBeep method performs
high accuracy ranging in static testing.

Narrowing down to this thesis, because the BeepBeep system is not relative to signal
reconstruction, the peak detection or Cross-Correlation works analogously as a matched
filter, so the Nyquist-Shannon Sampling Theorem is irrelevant in the entire process. The
testing scenario in the paper [17] is recording and playing sides select 44100Hz, so the
data amount is unchanged. Nevertheless in signal reconstruction the Nyquist-Shannon
Sampling Theorem is a rigidity criterion.

To integrate the BeepBeep method into the acoustic self-localization for NAO robots,
the entire process is shown in Figure 5.9. All robots open audio stream and make a long
enough window length to record more data as possible for later sound detecting and
AFSK demodulating. To ensure the accuracy level of sound detecting, the memory is
sacrificed. If the window is 60 seconds long and the sampling rate is 44100Hz for stereo
channel, then according to equation 2.2 the data volume is 10584000Bytes. Otherwise
Cross-Correlation algorithm to matched filter is too expensive on NAO robot. So there
is a compromise between accuracy and computation power that high ranging accuracy
needs the a long recording window open which makes the memory and CPU suffer
from the huge burden, so the CPU can not process the Audio I/O immediately, that the
outcome is often overdue.

60sec.× 44100Hz × 2Bytes× 2Channel = 10584000Bytes (5.1)

Hence the main philosophy of BeepBeep Rang System is remaining in the prototype.
Instead of Cross-Correlation algorithm a tedious peak detecting function in the time
domain is deployed first, after the sampled signal go through a Butterworth Band Pass
Filter (BPF) for increasing the SNR. It shows more reliable real-time feature than the
Cross-Correlation algorithm and is also able to hand out a trustful peak detection result.
The ranging error is usually within 150cm.

In the Figure 5.3 the first plotting is the recorded sound in NAO V5. The sound is
noisy, although the separate signal has bigger amplitude but because of wave superposi-
tion it becomes turbid. The middle plotting shows the gist of the real sound after setting
an amplitude threshold. The last plotting is the sound filtered out by a Butterworth Band
Pass Filter (BPF), the separate signal towers over and has an obvious peak.

The duration of the separate signal is even 0.1 second which is composed of 4410

samples on both recording and playing side.
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Figure 5.3: Plotting of peak detection process

5.2.1 NAO Robot Self-Localization

The two deployed TDoA associating algorithms work significantly fast and accurate in
static testing. Because during RoboCup most audio propagating paths are LOS between
robots, the TDoA localization algorithms fulfil all demands for a reasonable localization
estimation if the ToA of audio and the known position information are accurate.

5.2.1.1 Simulating Scenario Statement

The TLS algorithm demands a reference node and others compare to it, while the ML
estimates the unknown with regards to the first arriving as the reference node.

To ease the calculation of demonstration and testing the algorithm process, then a
scenario for TDoA with four reference positions of robots in 2D is established.

An arbitrary locating at (x, y) in a planar surface. Generating a random 2D node in
Python snippet beneath.

Listing 5.1: Generating one unknown position
1 import numpy as np

2 bn = L * np.random.rand(2, 1)

L is an integer defining the area of planar surface. It is in charge to create the ToA
information.
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With the known positions of robots as reference nodes with their ToA an array with
n ∗ 4 shape can be constructed, and n is the dimension of estimation.

rn =


x1 y1

x2 y2

x3 y3

x4 y4

 (5.2)

Listing 5.2: Generating reference nodes
1 rn = L * np.random.rand(2, 4)

The corresponding toa array for the matrix 3.8 about the known positions of robots
is equation 5.3.

toa =


toa1

toa2

toa3

toa4

 (5.3)

Containing the toa array is not immediate. First step, calculating the distance be-
tween two points a and b in the Cartesian Coordinate System according to the equation
5.4. For testing purpose the unknown is informed, so the distances between the refer-
ences and the unknown are calculable. Consequently the ToA is also gainable.

d2ab = a2 + b2 (5.4)

Listing 5.3: Calculating ToA
1 toa = np.sqrt(np.sum((rn-bn)**2, axis=0)) / v

Where v in the Python snippet above is the speed of sound. Adding Gaussian Noise
to the toa term.

Listing 5.4: Extra noise
1 noise = np.zeros(0)

2 for i in range(len(toa)):

3 noise = np.append(noise, np.random.randn()) * 1e-6

4 toa = toa + noise

An array constructed for testing TDoA algorithm is in equation 5.5 and correspond-
ingly in Python code for its constructing.
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array =


x1 y1 toa1

x2 y2 toa2

x3 y3 toa3

x4 y4 toa4

 (5.5)

Listing 5.5: Array for localization estimation
1 ary = (np.vstack((rn, toa))).T

5.2.1.2 Simulation and Testing Results, Conclusions

• Static Testing of Localization Algorithms

The improved TDoA associating algorithms, TLS and ML, are relatively cheap
computation cost and able to hand out reasonable localization estimation results
in static testing.

• Testing Results of NAO Robot Self-Localization in Reality

The RMS method is introduced in Section 3.2 for sound detecting that is also used
measure of positioning accuracy [32]. The estimated coordinates of unknown are
evaluated by RMS method by following equations 5.6, 5.7, 5.8. X and Y denote
the true coorinates, Xi and Yi are estimated coordinates.

RMSX =

√√√√ 1

n

n∑
i=1

(Xi −X)2 (5.6)

RMSY =

√√√√ 1

n

n∑
i=1

(Yi − Y )2 (5.7)

RMSXY =
√
RMS2

X +RMS2
Y (5.8)

– The first test scenario is the ALSA volume setting in 80% volume. Each
robot plays a separate signal in 0.05 second in 44100Hz in 100% of the
ALSA volume followed by an AFSK signal sampled at 11025Hz with
80% of the ALSA volume in mono track1, records them at 44100Hz sam-
ple rate, ML algorithm for less than 4 nodes and TLS are engaged using

1Left loudspeaker and right loudspeaker play sound together
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Figure 5.4: Estimations of unknown with 3 nodes

Source Location Type of Errors
Algorithm X(m) Y(m) RMSX RMSY RMSXY

ML for ≤ 4 0.425 0.479 1.32778089803 0.697739717866 1.4999476081
TLS 0.425 0.479 0.866803976238 0.625770647707 1.06908280164

Table 5.1: Comparison of RMS rrror for Maximum Likelihood and Total Least Square
using peak detection

peak detection. Three robots with known position locate at (0.684,−0.755),
(−1.780,−0.578) and (−0.723,−1.249), the estimated results of the inter-
est point at (0.425, 0.479) which is denoted in red cross are shown in Figure
5.4.

In Figure 5.4 blue stars denote the estimations of TLS and the green circles
are the results from ML for less than 4 nodes. Although, theoretically the
estimated results of ML for less than 4 known nodes have high accuracy
when the SNR is high, it gives out the localization estimation only when a
positive root in equation 3.12 exists. And as the noise level increasing, the
testing in reality turns out that the estimation results from TLS are closer to
the real position of unknown comparing to the ML algorithm shown in Table
5.1.
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Figure 5.5: Estimations of unknown with 4 nodes

So the ML for more than 4 nodes and TLS are involved in the final imple-
mentation, both of them are able to compute 2D and 3D. The audio buffers
missing issue is in [33] mentioned, besides the distorted sound interferes in
peak detection process, both cases impact the localization accuracy. Even
though the robots play signal in single track, the two loudspeakers as sound
sources are also disturbing the signal arrival time.

– The second testing scenario is the ALSA volume in 80% volume. Each robot
plays a separate signal in 0.05 second in 44100Hz in 100% of ALSA volume
with mono track followed by an AFSK signal sampled at 11025Hz with
80% of ALSA volume, while records them at 44100Hz sample rate. ML
algorithm for more than 4 nodes and TLS are engaged using peak detection.

Three robots with known position as same as the first testing scenario locate
at (0.684,−0.755), (−1.780,−0.578) and (−0.723,−1.249), adding an ex-
tra robot at (−1.424, 1.087), the estimated results in green dots of interest
point at (0.425, 0.479), which is denoted in red cross, are shown in Figure
5.5.

In Table 5.2 the error value is big comparing to using 3 robots, because the
robot at (−1.424, 1.087) is V5 which has fan in its head, the inherent noise
leads into numbness.
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Source Location Type of errors
X(m) Y(m) RMSx RMSy RMSxy

0 0 0.859264923262 0.819786886259 1.1875970475

Table 5.2: The RMS of errors with 4 nodes using peak detection

Figure 5.6: Estimations of unknown with 4 nodes using Cross-Correlation algorithm

– The third testing scenario is the ALSA volume setting in 70% volume. Each
robot plays a separate signal with duration of 0.1 second in 44100Hz and
100% of ALSA volume single channel 2 followed by an AFSK signal sam-
pled at 11025Hz with 80% volume, while records them at 44100Hz sample
rate. ML algorithm for more than 4 nodes and TLS are engaged using cross-
correlation algorithm.

Four robots with known position locate at (1.80, 1.40), (1.018,−1.280),
(−2.277,−0.581) and (−0.803,−1.050), the interest point is positioning
at (0, 0) which is denoted in red cross in Figure 5.6. The estimated results
about position (0, 0) are plotting in Figure 5.6 with green dots.

– The fourth testing scenario has the same software configurations and algo-
rithms of third testing. Setting four robots on positions at (1.012, 1.232),
(0.998,−1.188), (−2.032,−1.160) and (−1.597, 1.444), the interest robot
located at (0, 0) and which is denoted in red cross in Figure 5.7, in addition

2only one loudspeaker plays, the other one is mute.
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Source Location Type of errors
X(m) Y(m) RMSx RMSy RMSxy

0 0 0.539754248427 0.995224720645 1.13216910984

Table 5.3: The RMS of errors with 4 nodes using Cross-Correlation algorithm

Figure 5.7: Estimations of unknown with 4 nodes using Cross-Correlation Algorithm

its orientation is 180◦ to the positive direction of X-axis. The estimated
results about robot at (0, 0) are plotting in Figure 5.7 in green dots.

The Figure 5.8 in scatter plotting represents the estimated orientations of
robot locating at (0, 0) by the proposed robot orientation algorithm. Robot
orientation estimation works differently on different NAO robots, since the
two microphones on both sides have individual features. However the pro-
posed robot orientation algorithm gives trustworthy estimation, as long as its
localization estimation is available and meaningful peak detections on both
microphones.

Source Location Type of errors
X(m) Y(m) RMSx RMSy RMSxy

0 0 0.498759201536 0.368872028762 0.620344512928

Table 5.4: The RMS of errors with 4 nodes using Cross-Correlation algorithm
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Figure 5.8: Estimations of the proposed robot orientation algorithm

5.3 Integration

The original design of integrating acoustic self-localization for NAO robot is in Figure
3.1.

The compact processes pertaining to the subject of acoustic self-localization for au-
tonomous soccer robots is illustrated in Figure 5.9.
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2 contains subprocesses in Figure 3.2
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

This thesis has combined Audio Frequency-shift Keying (AFSK) as robot communicat-
ing method to exchange location information and Time Difference of Arrival (TDoA)
algorithm for self-localization, and attends to the characteristics of NAO robot and the
SPL rule book [18] in tending to explore a novel approach for data exchanging and self-
localization during RoboCup game to overcome the limitation of conventional UDP
communicating and be free from the vision-based localization and estimate more reli-
able position results.

In the Audio Frequency-shift Keying (AFSK) modulating as well as demodulating
procedure, a Forward Error Correction technique named Hamming(7,4) is involved in
both to provide a robust decoding procedure due to the interference during audio signal
propagating through the air, particularly by RoboCup gaming. Moreover in AFSK de-
modulating many Digital Signal Processing (DSP) functions are utilised, they enforce
the AFSK demodulating process which shows robustness under complicated sound en-
vironment. But a meaningful AFSK demodulating result is restricted by the sensitivity
of the transducers involved and the characteristics of sound wave itself. The energy
decay is inevitable in reality as the length propagation path increasing.

A time-based localization algorithm, Time Difference of Arrival (TDoA), for acous-
tic self-localization aiming at autonomous soccer robots is implemented in this the-
sis with two associating algorithms, Total Least Square and Maximum Likelihood, to
achieve different accuracy level under 2D or/and 3D condition. The simulation results
estimate loose localization and perform robustness. But a precise localization result
of unknown is merely lying on the known information, aka. the known positions and
the range measuring accurate level. In this thesis, two methods, synchronization with

65
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sound onset detection in a Master/Slave networking and the BeepBeep Ranging System,
are deployed and tested. By testing the first approach, the high density of information
exchanging per Wi-Fi among NAO robots shows uncertainty due to the network con-
gestion, thusly a successful ToA of acoustic signal can not be achieved. In the testing
of ranging method BeepBeep, the static testing results are accurate as same as they
announced in paper and the proposed algorithm for peak-detection, Cross-Correlation,
gives a better estimation of ranging measuring than a tedious peak detection on ampli-
tude. But the Cross-Correlation requires high computation which is not processed in
real-time on NAO robot. In order to reach a balance of complexity between preprocess-
ing and detection function, first a simplified peak detection is deployed on the signal
receiver side to determine the onset and a Cross-Correlation algorithm followed to seek
a specific signal in a small range. The ranging results are limited because the distorted
sound occurs in playing or recording in NAO robots.

The acoustic localization and communication based on AFSK method perform
poorly, the hardware obstacles are a gap between theoretical and practical feasibility.
Besides it also restricted by the characteristics of sound wave itself. Therefore, to im-
prove the loose localization based on acoustics, a better transducers set in NAO robot is
the first prerequisite.

However instead of accurate acoustic localization, the implemented self-localization
system for autonomous soccer robots can hand out loose or block localization estima-
tions within 1 minute for entire 6 robot players including AFSK information encoding
and decoding, also self-localization process.

6.2 Future Work

In this thesis many practical and experimental methods for comparing, testing and im-
plementing a real-time acoustics localization system on NAO robot have been trailed
and adopted, to find an appropriate solution matching the limitation in hardware of NAO
robot and also achieving as best as possible localization estimation results. These trails
and experiments are not covering Artificial Intelligence (AI) fields. But there are many
possibilities introducing Artificial Intelligence (AI) into the self-localization process,
such as during preparing TDoA localization the geographic or geometric measuring is
unavoidable, in this thesis only two methods have been mentioned in Section 5.2. The
physical distance measurement can be accomplished by machine learning algorithm too.
The robots can study first about the relationship between distance changing and Sound
Pressure Level (SPL) varying [34], and then by using regression and linearisation the
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distance between sound source and itself can be evaluated. This method also does not
require time synchronisation and hardware calibration.

All scientific approaches are using known to explore and deduce unknown. The
estimations of unknown position are based on the known positions which is given out
by manual measuring during laboratory stage and by the existing Particle Filter and
Kalman Filter during RobotCup competition in the future. Weighting the estimated
positions from different localization methods and taking advantage of prior knowledge
to gain a more trustful and accurate estimation for location is another challenge.

Hence future work will focus on improving localization estimation using prior
knowledge and introducing AI algorithms into self-localization process.



68 Conclusion and Future Work



Bibliography

[1] WEI, CHANGYUN, JUNCHAO XU, CHANG WANG, PASCAL WIGGERS and
KOEN HINDRIKS: An approach to navigation for the humanoid robot nao in do-

mestic environments. In Conference Towards Autonomous Robotic Systems, pages
298–310. Springer, 2013. 1

[2] FOJTUU, SIMON, MICHAL HAVLENA and TOMAS PAJDLA: Nao robot local-

ization and navigation using fusion of odometry and visual sensor data. In In-

ternational Conference on Intelligent Robotics and Applications, pages 427–438.
Springer, 2012. 1

[3] ELMOGY, MOHAMMED and JIANWEI ZHANG: Robust real-time landmark recog-

nition for humanoid robot navigation. In Robotics and Biomimetics, 2008. ROBIO

2008. IEEE International Conference, pages 572–577. IEEE, 2009. 1

[4] DAVISON, ANDREW J: Real-time simultaneous localisation and mapping with a

single camera. In Computer Vision, 2003. Proceedings. Ninth IEEE International

Conference, pages 1403–1410. IEEE, 2003. 1

[5] OSSWALD, STEFAN, ARMIN HORNUNG and MAREN BENNEWITZ: Learning

reliable and efficient navigation with a humanoid. In Robotics and Automation

(ICRA), 2010 IEEE International Conference on, pages 2375–2380. IEEE, 2010.
1

[6] HAMBOECK, THOMAS and DIETMAR SCHREINER: Austrian Kangaroos Team

Research Report 2014 [Report about acoutic trail Whistle in NAO]. Technical Re-
port, Vienna University of Technology and University of Applied Sciences Vienna,
2015. 2, 42

[7] FRANK, ROBERT L: History of Loran-C. Navigation, 1982. 2, 19

[8] PRIYANTHA, NISSANKA BODHI: The cricket indoor location system. PhD thesis,
Massachusetts Institute of Technology, 2005. 2

69



70 BIBLIOGRAPHY

[9] CECH, JAN, RAVI MITTAL, ANTOINE DELEFORGE, JORDI SANCHEZ-RIERA,
XAVIER ALAMEDA-PINEDA and RADU HORAUD: Active-speaker detection and

localization with microphones and cameras embedded into a robotic head. In
Humanoid Robots (Humanoids), 2013 13th IEEE-RAS International Conference

on, pages 203–210. IEEE, 2013. 2

[10] LI, XIAOFEI, LAURENT GIRIN, FABIEN BADEIG and RADU HORAUD: Rever-

berant sound localization with a robot head based on direct-path relative transfer

function. In Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International

Conference on, pages 2819–2826. IEEE, 2016. 2

[11] ALDEBARAN-ROBOTICS: NAO humanoid robot Software 1.14.5 documentation.
http://doc.aldebaran.com/1-14/. 2

[12] SOFTBANK ROBOTICS EUROPE: hardware_speakerposition.png.
http://doc.aldebaran.com/1-14/_images/hardware_

speakerposition.png, 2016. 2

[13] ALDEBARAN-ROBOTICS: Motherboard. http://doc.aldebaran.com/

2-1/family/robots/motherboard_robot.html. 2, 27

[14] WATSON, BOB: FSK: signals and demodulation. Tech Notes, 1980. 8, 9, 25, 44

[15] GOERTZEL, GERALD: An Algorithm for the Evaluation of Finite Trigonometric

Series. The American Mathematical Monthly, 65(1):34–35, 1958. 9

[16] OPPENHEIM, ALAN: RES.6-008 Digital Signal Processing. Spring 2011. Mas-
sachusetts Institute of Technology: MIT OpenCourseWare. 16, 75

[17] PENG, CHUNYI, GUOBIN SHEN, YONGGUANG ZHANG, YANLIN LI and KUN

TAN: Beepbeep: a high accuracy acoustic ranging system using cots mobile de-

vices. In Proceedings of the 5th international conference on Embedded networked

sensor systems, pages 1–14. ACM, 2007. 16, 23, 54, 55

[18] COMMITTEE, ROBOCUP TECHNICAL: RoboCup Standard Platform League

(NAO) Rule Book. http://www.tzi.de/spl/pub/Website/

Downloads/Rules2017.pdf, 2016. 19, 25, 30, 43, 65

[19] EL GEMAYEL, NOHA, SEBASTIAN KOSLOWSKI, FRIEDRICH K JONDRAL and
JOACHIM TSCHAN: A low cost tdoa localization system: Setup, challenges and

http://doc.aldebaran.com/1-14/
http://doc.aldebaran.com/1-14/_images/hardware_speakerposition.png
http://doc.aldebaran.com/1-14/_images/hardware_speakerposition.png
http://doc.aldebaran.com/2-1/family/robots/motherboard_robot.html
http://doc.aldebaran.com/2-1/family/robots/motherboard_robot.html
http://www.tzi.de/spl/pub/Website/Downloads/Rules2017.pdf
http://www.tzi.de/spl/pub/Website/Downloads/Rules2017.pdf


BIBLIOGRAPHY 71

results. In Positioning Navigation and Communication (WPNC), 2013 10th Work-

shop on, pages 1–4. IEEE, 2013. 21

[20] OFFICE, ENGINEER-IN-CHIEF’S: Technical Pamphlet for Workmen - The

Baudot Multiplex Printing-Type System, 1919. 25

[21] EUROPE, SOFTBANK ROBOTICS: hardware_microposition.png. http://doc.
aldebaran.com/1-14/_images/hardware_microposition.png,
2016. 25

[22] SAVITZKY, ABRAHAM and MARCEL JE GOLAY: Smoothing and differentiation

of data by simplified least squares procedures. Analytical chemistry, 36(8):1627–
1639, 1964. 30

[23] FOY, WADE H: Position-location solutions by Taylor-series estimation. IEEE
Transactions on Aerospace and Electronic Systems, (2):187–194, 1976. 31

[24] FANG, BERTRAND T: Simple solutions for hyperbolic and related position fixes.
IEEE transactions on aerospace and electronic systems, 26(5):748–753, 1990. 32

[25] LAARAIEDH, MOHAMED, STEPHANE AVRILLON and BERNARD UGUEN: Over-

coming singularities in TDoA based location estimation using total least square. In
Signals, Circuits and Systems (SCS), 2009 3rd International Conference on, pages
1–4. IEEE, 2009. 32, 47, 48

[26] CHAN, YIU TONG and KC HO: A simple and efficient estimator for hyperbolic

location. IEEE Transactions on signal processing, 42(8):1905–1915, 1994. 33, 34,
49

[27] CASPER WILSTRUP, LARS IMMISCH: alsaaudio documentation. https://

larsimmisch.github.io/pyalsaaudio/. 42, 43

[28] FAGERNESS, TRAVIS: FSK Explained with Python. https:

//www.allaboutcircuits.com/technical-articles/

fsk-explained-with-python/, 2015. 44

[29] ROTTERDAM, V2_LAB: A Python Implementation of Chan’s TDoA algorithm for

Ultrasonic Positioning and Tracking. Technical Report, Stock, V2_Lab Rotterdam,
2008. 49

[30] BECHON, PATRICK and JEAN-JACQUES SLOTINE: Synchronization and quorum

sensing in a swarm of humanoid robots. arXiv preprint arXiv:1205.2952, 2012. 52

http://doc.aldebaran.com/1-14/_images/hardware_microposition.png
http://doc.aldebaran.com/1-14/_images/hardware_microposition.png
https://larsimmisch.github.io/pyalsaaudio/
https://larsimmisch.github.io/pyalsaaudio/
https://www.allaboutcircuits.com/technical-articles/fsk-explained-with-python/
https://www.allaboutcircuits.com/technical-articles/fsk-explained-with-python/
https://www.allaboutcircuits.com/technical-articles/fsk-explained-with-python/


72 BIBLIOGRAPHY

[31] LIU, YUNHAO, ZHENG YANG, XIAOPING WANG and LIRONG JIAN: Loca-

tion, localization, and localizability. Journal of computer science and technology,
25(2):274–297, 2010. 54
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Appendix A

Python Script For FSK Signal
Generating

Python Script For FSK Signal Generating

soundencoder.py

1 import numpy as np

2

3 SAMPLE_RATE = 50

4 MAX_FREQUENCY = 10000

5 DEV_FREQUENCY = 1000

6 CARRIER_FREQUENCY = 2000

7 AMPL = 1

8

9

10 def encodeSound(data):

11

12 nbits = len(data)

13

14 t = np.arange(0, float(nbits)/float(SAMPLE_RATE), 1/float(MAX_FREQUENCY), dtype='
np.float)

15 m = np.zeros(0).astype(float)

16

17 for bit in data:

18 if bit == 0:

19 m = np.hstack((m, np.multiply(np.ones(MAX_FREQUENCY/SAMPLE_RATE), '
CARRIER_FREQUENCY+DEV_FREQUENCY)))

20 else:

21 m = np.hstack((m, np.multiply(np.ones(MAX_FREQUENCY/SAMPLE_RATE), '
CARRIER_FREQUENCY-DEV_FREQUENCY)))

22

23 sig = AMPL * np.cos(2 * np.pi * np.multiply(m, t))

24

25 return sig
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