
Technische Universität Berlin

Gesture Recognition for Human-Robot
Interaction: An approach based on skeletal

points tracking using depth camera

Masterarbeit
am Fachgebiet Agententechnologien in betrieblichen Anwendungen und der

Telekommunikation (AOT)
Prof. Dr.-Ing. habil. Sahin Albayrak

Fakultät IV Elektrotechnik und Informatik
Technische Universität Berlin

vorgelegt von
Sivalingam Panchadcharam Aravinth

Betreuer: Prof. Dr.-Ing. habil. Sahin Albayrak,
Dr. Yuan Xu

Sivalingam Panchadcharam Aravinth
Matrikelnummer: 342899
Sparrstr. 9
13353 Berlin

Statement of Authorship

I declare that I have used no other sources and aids other than those indicated. All
passages quoted from publications or paraphrased from these sources are indicated as
such, i.e. cited and/or attributed. This thesis was not submitted in any form for another
degree or diploma at any university or other institution of tertiary education

Place, Date Signature

II

Abstract

Human-robot interaction (HRI) has been a topic of both science fiction and academic
speculation even before any robots existed. HRI research is focusing to build an intuitive
and easy communication with the robot through speech, gestures and facial expressions.
The use of hand gestures provides a better solution than conventional human-machine
interfaces. Furthermore, translations of hand gestures can help in accomplishing the ease
and naturalness desired for HRI. This has motivated a very active research concerned
with computer vision-based analysis and interpretation of hand gestures.

In this thesis, we aim to implement the hand gesture recognition for robots with
modeling, training, classifying and recognizing gestures based on computer vision algo-
rithms and machine learning techniques. Gestures are modeled based on skeletal points
and the features are extracted using NiTE framework using a depth camera.

In order to recognize gestures, we propose to learn and classify hand gestures with
the help of Adaptive Naive Bayes Classifier using Gesture Recognition Toolkit. Fur-
thermore, we aim to build a dashboard that can visualize the interaction between all
essential parts of the system. Finally, we attempt to integrate all these functionalities
into a system that interacts with a humanoid robot NAO.

As a result, on one hand, gestures will be used command the robot to execute certain
actions and on the other hand, gestures will be translated and spoken out by the robot.

Keywords

Human-Robot Interaction, HRI, Hand Gesture Recognition, Humanoid Robot, NAO,
Skeletal Points Tracking, NiTE, Depth Camera, Asus Xtion Pro Live, Machine Learn-
ing, Adaptive Naive Bayes Classifier, ANBC, Gesture Recognition Toolkit, GRT

III

Acknowledgments

It is a pleasure to thank all those who made this thesis possible. First of all, I would
like to deeply thank my thesis advisor Dr. Yuan Xu for his continued support throughout
the months that i worked on this Master Thesis at DAI Labor.

The biggest thanks have to go to my parents and my wife Natalia. Without their
support, encouragement and patience, this thesis would not have been completed. Fur-
thermore, I would like to thank my friend Mladen Miljic at Yetu AG for the hardware
support for this work.

I am extremely grateful for the members of the examining committee, especially Prof.
Sahin Albayrak, Dr. Stefan Fricke, Martin Berger for the constructive comments on this
manuscript. Additionally, i would like to thank my friends at DAI Labor who have been
helping me in various tasks during my thesis.

Finally, i would like to thank my employer Alessio Avellan Borgmeyer of The Jodel
Venture GmbH who managed to support my autonomy, and provided me enough finan-
cial support and time off from my official working hours, so that i could concentrate on
my thesis.

IV

Contents

Statement of Authorship II

Abstract II

Acknowledgments III

Contents IV

1 Introduction 1
1.1 Goal . 2
1.2 Outline . 3

2 Background 4
2.1 NAO - The Humanoid Robot . 4

2.1.1 Body . 4
2.1.2 Motion . 5
2.1.3 Audio . 6
2.1.4 Depth Sensor . 7
2.1.5 Computing . 8

2.2 Hand Gesture Recognition . 9
2.2.1 Gesture Modeling . 10
2.2.2 Gestural Taxonomy . 11
2.2.3 Feature Extraction . 11

2.2.3.1 OpenNI 2 . 12
2.2.3.2 NiTE 2 . 12
2.2.3.3 Skeletal Points Tracking Algorithm 13

2.2.4 Gesture Classification and Prediction 18
2.2.4.1 Adaptive Naive Bayes Classifier 19
2.2.4.2 Gesture Recognition Toolkit (GRT) 21

V

CONTENTS CONTENTS

2.3 Summary . 26

3 Hand Gesture Recognition for Human-Robot Interaction 27
3.1 Implementation . 27

3.1.1 Human-Robot Interaction (HRI) Module 27
3.1.1.1 UDP Server . 29
3.1.1.2 Gesture Tracker . 30
3.1.1.3 Skeleton Tracker . 31

3.1.2 Brain Module . 33
3.1.2.1 UDP Client . 34
3.1.2.2 Brain . 35
3.1.2.3 WebSocket Server 36

3.1.3 Control Center (CC) Module 37
3.1.4 Command Module . 39
3.1.5 Head Mount . 40

3.2 Gesture Recognition . 41
3.2.1 Hand Gestures Modeling . 41
3.2.2 Training . 42
3.2.3 Prediction . 45

3.3 Human-Robot Interaction . 45
3.3.1 Gesture-to-Speech . 47
3.3.2 Gesture-to-Motion . 47
3.3.3 Gesture-to-Gesture . 49

3.4 Summary . 49

4 Results 50
4.1 Gesture-To-Motion Results . 50
4.2 Gesture-To-Gesture . 56
4.3 Evaluation . 56

4.3.1 Mean and Standard Deviation 57
4.3.2 Classification and Prediction 57
4.3.3 Prediction Accuracy Vs Null Rejection Accuracy 59

5 Conclusion and Future work 62
5.1 Discussion . 63
5.2 Future Work . 64

VI

CONTENTS CONTENTS

Bibliography 66

List of Figures 66

List of Tables 70

Abbreviations 71

Appendix 72

A Toolchain 72

VII

Chapter 1

Introduction

Huge influence of computers in society has made smart devices an important part of our
lives. Availability, affordability and functionality of such devices motivated us to use
them in our day-to-day living. The list of smart devices includes personal automatic
and semi-automatic robots that are also playing a major role in our household. For an
instance, Roomba is an autonomous robotic vacuum cleaners that automatically cleans
the floor and goes to its charging station without human interaction [?].

Interaction with smart devices is still being mostly through displays, keyboards,
mouse and touch interfaces. These devices have grown to be familiar but inherently
limit the speed and naturalness with which we can interact with the machine. Usage of
robots for domestic and industrial purposes has been continuously increasing [?]. Thus
in recent years, there has been a tremendous push in the research towards an intuitive
and easy communication with the robot through speech, gestures and facial expressions.

Tremendous progress have been made in speech recognition and several commer-
cially successful speech interfaces are available [?]. However, speech recognition sys-
tems have certain limitations such as misinterpretation due to various accents and back-
ground noise interference.

Furthermore, there has been an increased interest in recent years in trying to intro-
duce other human-to-human communication modalities into HRI. This includes a class
of techniques based on the movement of the human arm or hand. The use of hand
gestures provides an attractive alternative for HRI than the conventional cumbersome
devices.

1

1.1 Goal Introduction

1.1 Goal

As described earlier, HRI research is focusing to build an intuitive and easy communi-
cation with the robot through speech, gestures and facial expressions. The use of hand
gestures provides the ease and naturalness with which the user can interact with robots
[?]. Our goal in this thesis to implement a system that should be integrated into NAO to
recognize hand gestures.

Existing cameras of NAO are greatly limited by the quality of the input image. Vari-
ations in lighting and background clutters would only worsen the problem [?]. On the
other hand, depth-based approaches are able to provide satisfactory results for hand ges-
ture recognition even with poor indoor lighting and cluttered background condition [?].
Therefore, we have chosen Asus Xtion which has sensors that capture both RGB and
depth data. Asus Xtion is an OpenNI compatible device, thus, we have chosen a NiTE
middleware for the purpose of tracking the human skeletal points.

We have chosen Gesture Recognition Toolkit [?] to train and predict the 3D skele-
tal modeled gestures with feature based statistical learning algorithm. Adaptive Naive
Bayes Classifier is the supervised machine learning algorithm which is chosen for the
purpose of classifying and predicting the hand gestures in real time. Furthermore, all
these interactions must be displayed to visually understand the status of the system.
Finally, recognized hand gestures must be translated to robotic actions as following :

• Gesture-to-Speech should translate the recognized gestures and it should be spo-
ken out loud using the integrated loudspeaker.

• Gesture-to-Motion should move the robot from one position to another in the 2
dimensional space. Therefore, each gesture should be assigned to a locomotion
task.

• Gesture-to-Gesture should translate the human hand gesture to a robotic hand
gesture by imitating hand gestures of the user.

The goal should be reached by studying the various solution to this problem and
an appropriate design must be chosen. The main challenge is to find a solution that
can integrate all these components into a robust system. Furthermore, this system must
be tested and results must be presented clearly. Evaluations must be carried out to
demonstrate the effectiveness of the classifier and to validate its potential for real time
gesture recognition.

2

1.2 Outline Introduction

1.2 Outline

Background To begin with, we have studied key concepts, state of the art solutions
and tools available to accomplish this goal. Chapter 2 thoroughly discusses about the
humanoid robot and stages of hand gesture recognition with the help of computer vision
and machine learning algorithms. In details, this chapter explains the concepts of ges-
ture modeling, feature extraction from depth image by NiTE framework, learning and
classification of hand gestures using Adaptive Naive Bayes Classifier with the help of
GRT.

Hand Gesture Recognition for Human-Robot Interaction In addition to that, Chap-
ter 3 talks about the functional blocks of system and how they are implemented to pro-
vide an efficient solution. Furthermore, it illustrates the functionalities of Human-Robot
Interaction (HRI) module, Brain module, Control Center (CC) module and Command
module, and how they all are integrated into a robust system.

Results and Evaluation Finally, Chapter 4 shows promising results in recognizing
five static hand gestures which are trained in lab condition. It shows not only the perfor-
mances of gesture prediction, but also the human-robot interactions where the robot has
executed predefined tasks, when the hand gestures are recognized. Evaluation demon-
strates the effectiveness of the system and its potential for real time recognition appli-
cation. Finally, metrics such as mean, standard deviation, confusion matrix, precision,
recall, F-Measure are presented.

Conclusion In a conclusion, this manuscript demonstrates how the goal of building
a hand gesture recognition based on skeletal points tracking using depth camera is ac-
complished, as well as, how this system can be improved in several ways by proposing
various alternatives.

3

Chapter 2

Background

Areas of artificial intelligence deal with autonomous planning or deliberation for robotic
systems to navigate through an environment. A detailed understanding of these environ-
ments is required to navigate through them. High-level information about the environ-
ment could be provided by a computer vision system that is acting as a vision sensor.

In this thesis, we will focus on building hand gesture recognition system for a hu-
manoid robot name as NAO, with the help of computer vision algorithms to track the
skeletal points of human body using depth camera. Following sections clearly studies
the key concepts of this thesis.

2.1 NAO - The Humanoid Robot

NAO is an autonomous programmable humanoid robot invented by Aldebaran Robotics.
NAO Academics Edition is developed for universities and laboratories for research and
educational purposes. Follow subsections briefly discuss the specifications of NAO as
described by Aldebaran Robotics [?].

2.1.1 Body

NAO has a body with 25 degrees of freedom (DOF) whose key elements are electric
motors and actuators as show in the figure 2.1. It has 48.6-watt-hour battery that pro-
vides 1.5 or more hours of autonomy, depending on the usage. Additional specifications
of robot are shown in the table 2.1.

4

2.1 NAO - The Humanoid Robot Background

Figure 2.1: The body construction of NAO V5. [?]

Figure 2.2: Standing, Sitting and Crouching postures of virtual NAO using ALRobot-
Posture module. [?]

2.1.2 Motion

NAOs motion module is based on generalized inverse kinematics, which handles lo-
comotion, joint control, balance, redundancy, and task priority. This means that when
asking it to extend its arm, it bends over because its arms and leg joints are taken into
account.

In this thesis, we attempt to use the locomotion and stiffness control of Motion API
to move NAO to a position in the two dimensional space. Robot Posture API will also
be used to make the robot go to the predefined posture such as Stand, Sit and Crouch as
shown in the figure 2.2.

5

2.1 NAO - The Humanoid Robot Background

Table 2.1: NAO V5 specification. [?]

Height 58 centimeters (23 in)
Weight 4.3 kilograms (9.5 lb)
Battery autonomy 60 minutes (active use), 90 minutes (normal use)
Degrees of freedom 25
CPU Intel Atom @ 1.6 GHz
Built-in OS Linux
SDK compatibility Windows, Mac OS, Linux
Programming languages C++, Python, Java, MATLAB, Urbi, C, .Net
Vision 2 x HD 1280x960 cameras
Connectivity Ethernet, Wi-Fi

Sensors

4 x directional microphones
1 x sonar range finder
2 x IR emitters and receivers
1 x inertial board
9 x tactile sensors
8 x pressure sensors

2.1.3 Audio

NAO uses four directional microphones to detect sounds and equipped with a stereo
broadcast system made up of 2 loudspeakers in its ears as shown in the figure 2.3.
NAOs voice recognition and text-to-speech capabilities allow it to communicate in 19
languages.

Figure 2.3: Stereo broadcast system of NAO using 2 loudspeakers. [?]

In this thesis, we aim to use Text-To-Speech API of NAO to say the detected gesture
out loud.

6

2.1 NAO - The Humanoid Robot Background

2.1.4 Depth Sensor

Skeletal points based gesture recognition needs three dimensional data of the human
skeleton. However, sensors integrated with NAO could not provide precise three di-
mensional data to the sophisticated algorithms to track human skeletal joints [?]. 3D
cameras such as Microsoft Kinect and Asus Xtion are used not only for gaming but also
for analyzing 3D data, including algorithms for feature selection, scene analysis, motion
tracking, skeletal tracking and gesture recognition [?] [?]. Therefore, we seek to utilize
Asus Xtion PRO LIVE as an external camera to support the skeletal points tracking
system of NAO.

Figure 2.4: OpenNI compatible Asus Xtion PRO LIVE is a commercial depth camera
that can capture both RGB and depth image. [?]

Table 2.2: Asus Xtion PRO LIVE specification. [?]

Distance of Use Between 0.8m and 3.5m
Field of View 58 deg Horizontal, 45 deg Vertical, 70 deg Diagonal

Frame rate
VGA (640x480) : 30 fps
QVGA (320x240): 60 fps

Resolution SXGA (1280x1024)
Dimensions 18 x 3.5 x 5 cm

Sensors
1 x RGB Video camera
2 x IR Depth sensors
2 x Microphones

Asus Xtion Figure 2.4 shows Asus Xtion PRO LIVE that uses infrared sensors, adap-
tive depth detection technology, color image sensing and audio stream to capture a 3D
image of the user in real-time. It uses infrared emitters to project speckle patterns on the
object and uses a structured light technique to compute the depth of the image. Once
the depth image is computed, it is mapped onto the RGB image as shown in the figure
2.5. Lighter color denote that a pixel is closer to the camera and darker color denotes

7

2.1 NAO - The Humanoid Robot Background

that a pixel is far from the camera. Table 2.2 indicates the specification of Asus Xtion
PRO LIVE.

Figure 2.5: Depth Image captured by Asus Xtion PRO LIVE using OpenNI. The darker
the color of a pixel, the farther it is from the sensor. [?]

2.1.5 Computing

NAO is equipped with Intel ATOM 1.6 GHz CPU in the head that runs a 32 bit Gen-
too Linux to support Aldebarans proprietary middleware (NAOqi). NAOqi SDK is the
programming framework used to program Aldebaran robots [?]. This framework al-
lows homogeneous communication between different modules such as motion, audio
and video. NAOqi executable that runs on the robot is a broker. The broker provides
lookup services so that any module in the tree or across the network can find any method
that has been advertised as shown in the figure 2.6.

Computational limitations [?] of NAO CPU hinders us to build a real time gesture
recognition based on human skeletal joints. Thus, we aim to use an off-board computer
to execute the gesture recognition program and communicated with NAO via NAOqi
proxies.

8

2.2 Hand Gesture Recognition Background

Figure 2.6: NAOqi modules form a tree of methods attached to modules, and modules
attached to a broker. Thus, NAOqi Broker (proxy) can be used to remotely invoke any
attached methods. [?]

2.2 Hand Gesture Recognition

Human hand gestures are means of nonverbal interaction among people. They range
from simple actions of using our hand to point at, to the more complex ones that express
our feelings and allow us to communicate with others. To exploit the use of gestures in
HRI, it is necessary to provide the means by which they can be interpreted by robots.
The HRI interpretation of gestures requires that dynamic and/or static configurations of
the human hand, arm and even other parts of the human body, be measurable by the
machine [?].

Initial attempts to recognize hand gestures resulted in electro-mechanical devices
that directly measure hand and/or arm joint angles and spatial position using sensors.
Glove-based gestural interfaces require the user to wear such a complex device that
hinders the ease and naturalness with which the user can interact with the computer
controlled environment [?].

Even though such hand gloves are used in highly specialized domain such as simu-
lation of medical surgery or even in the real surgery, the everyday user will be certainly
deterred by such sophisticated interfacing devices. As an active result of the motivated
research in HRI, computer vision based techniques are innovated to augment the natu-
ralness of interaction.

9

2.2 Hand Gesture Recognition Background

2.2.1 Gesture Modeling

Figure 2.7 shows various types of modeling techniques used to model a gesture [?].
Selection of an appropriate gesture modeling depends primarily on the intended appli-
cation. For an application that needs just hand gesture to go up and down or left and
light, a very simple model may be sufficient. However, if the purpose is a natural-like
interaction, a model has to be sophisticated enough to interpret all the possible gesture.
The following section discusses various gesture modeling techniques which are being
used by the existing hand gesture recognition applications.

Figure 2.7: Types of Spatial Gesture Modeling. [?]

Appearance based models do not use the spatial representation of the body, because
they derive the parameters directly from the images or videos using a template database
[?]. Volumetric approaches have been heavily used in computer animation industry and
for computer vision purposes. The models are generally created of complicated 3D
surfaces. The drawback of this method is that is very computational intensive.

Instead of using intensive processing of 3D hand models and dealing with a lot of
parameters, one can just use a simplified version that analyses the joint angle parameters
along with segment length. This is known as a skeletal representation of the body, where
a virtual skeleton of the person is computed and parts of the body are mapped to certain
segments [?]. The analysis here is done using the position and orientation of these
segments or the relation between each one of them.

In this thesis, we focus on skeletal based modeling, that is faster because the classi-
fier has to focus only on the significant parts of the body.

10

2.2 Hand Gesture Recognition Background

2.2.2 Gestural Taxonomy

Several taxonomies have been suggested that deal with psychological aspects of gestures
[?]. All hand/arm movements are first classified into two major classes Gestures and
Unintentional movements as shown in the figure 2.8.

Figure 2.8: The taxonomy of Hand Gestures. [?]

Manipulative gestures are the ones used to act on objects. For example, moving
a chair from one location to another. Manipulative gestures in the context of HRI are
mainly developed for medical surgery. Communicative gestures, on the other hand, have
purely communicational purpose. In a natural environment they are usually accompa-
nied by speech or spoken as a sign language. In HRI context these gesture are one of
the commonly used gestures, since they can often be represented by static as well as
dynamic hand postures.

In this thesis, we focus on communicative gestures in the form of symbols. They
symbolize some referential action. For instance, circular motion of hand may be referred
as a command to turn in a circular motion.

2.2.3 Feature Extraction

Feature extraction stage is concerned with the detection of features which will be used
for the estimation of parameters of the chosen gestural model. In the detection process
it is first necessary to localize the user. Following sections talk about algorithms which
are use to locate and extract features from the depth image.

11

2.2 Hand Gesture Recognition Background

2.2.3.1 OpenNI 2

OpenNI or Open Natural Interaction [?] is a framework by the company PrimeSense
and open source software project focused on improving interoperability of natural user
interfaces for Natural Interaction (NI) devices, applications which use those devices and
middleware that facilitates access and use of such devices. Microsoft Kinect and Asus
Xtion are commercially available depth cameras which are compatible with OpenNI.

The OpenNI 2.0 API provides access to PrimeSense compatible depth sensors. It
allows an application to initialize a sensor and receive depth, RGB and video streams
from the device. OpenNI also provides a uniform interface that third party middleware
developers can use to interact with depth sensors. Applications are then able to make
use of both the third party middleware, as well as underlying basic depth and video data
provided directly by OpenNI.

2.2.3.2 NiTE 2

PrimeSense Natural Interaction Technology for End-user (NiTE) [?] is the middleware
that perceives the world in 3D, based on the PrimeSensor depth images, and translates
these perceptions into meaningful data in the same way as people do. NiTE middleware
includes computer vision algorithms that enable identifying users and tracking their
movements. Figure shows the architecture of NiTE, how it is working together with
OpenNI, depth sensors and applications.

Figure 2.9 displays a layered view of producing, acquiring and processing depth
data, up to the level of the application that utilizes it to form a natural- interaction based
module.

• The lower layer is the PrimeSensor device, that is the physical acquisition layer,
resulting in raw sensory data from a stream of depth images.

• The next C shaped layer is executed on the host PC represents OpenNI. OpenNI
provides communication interfaces that interact with both the sensors driver and
the middleware components, which analyze the data from the sensor.

• The sensor data acquisition is a simple acquisition API, enabling the host to op-
erate the sensor. This module is OpenNI compliant interfaces that conforms to
OpenNI API standard.

• The NiTE Algorithms layer is the computer vision middleware and is also plugged
into OpenNI. It processes the depth images produced by the PrimeSensor.

12

2.2 Hand Gesture Recognition Background

Figure 2.9: PrimeSense architecture shows that OpenNI processes depth data from the
depth camera in thee lower layer, computer vision algorithm NiTE as middleware and
in the higher layer end-user applications. [?]

• The NiTE Controls layer is an application layer that provides application frame-
work for gesture identification and gesture-based UI controls, on top of the data
that is processed by NiTE Algorithms.

2.2.3.3 Skeletal Points Tracking Algorithm

The lower layer of NiTE middleware that performs the groundwork of processing the
stream of raw depth images. This layer utilizes computer vision algorithms to perform
the following:

• Scene segmentation is a process in which individual users and objects are sepa-
rated from the background and tagged accordingly.

• Hand point detection and tracking.

• Full body tracking based on the scene segmentation output. Users bodies are
tracked to output the current user pose with a set of locations of body joints.

13

2.2 Hand Gesture Recognition Background

NiTE uses machine learning algorithms to recognize anatomical landmarks and pose
of human body. Figure 2.10 shows how skeleton tracking algorithm works from a single
input depth image and a per-pixel body part distribution is derived [?]. Colors indicate
the most likely part labels at each pixel and correspond to the joint proposals. Local
modes of this signal are estimated to give high-quality proposals for the 3D locations of
body joints, even for multiple users.

Figure 2.10: Skeleton Tracking algorithm processes a depth image and a per-pixel body
part distribution is inferred, and finally, 3D joints proposals are made for 15 points in
human skeleton. [?]

Training In order to train the system, large collection of synthetic and real represen-
tations of human body are recorded and labeled. Each body representation is covered
with several localized body part labels. Some of these parts are defined to directly lo-
calize particular skeletal joints of interest, while others fill the gaps or could be used in
combination to predict other joints.

Feature Labeling Features are located in depth image and labeled as shown in the
figure 2.11. Feature extraction uses simple depth comparison between pixels in the
depth image. For example, a feature θ1 is to find the top of the body by comparing
the depth difference of an offset pixel that is located above and feature θ2 is to find
thinner vertical body part such as arm. The yellow crosses indicate the pixel is being

14

2.2 Hand Gesture Recognition Background

classified. The red circles indicate the offset pixel with which the depth comparison will
be computed.

Figure 2.11: Features are located in depth image and labeled. [?]

Classification Randomized decision forest is the classification algorithm to predict the
probability of a pixel belonging to a body part. Randomized decision trees and forests
have been proven as fast and effective multi-class classifiers for many tasks [?]. Figure
2.12 shows the branching trees of Randomized Decision Forests algorithm and the red
arrows indicate the different paths that might be taken by different trees for a particular
input. A forest is an ensemble T decision trees. Each tree consists of split nodes (blue)
and leaf nodes (green). Each split node consists of a feature fθ and a threshold τ .

Figure 2.12: Randomized decision forest algorithm showing the branching trees with
blue as split node and green as leaf node. [?]

Prediction To classify a pixel x in image I using Randomized decision tree, one starts
at the root and repeatedly evaluates equation 2.1, branching left or right according to the
comparison of threshold τ . When the lead node in the decision tree t is reached, a
learned distribution Pt(c|I, x) over body part labels c is stored. The distributions are
averaged together for all trees in the forest to give the final classification.

15

2.2 Hand Gesture Recognition Background

Pt(c|I, x) =
1

T

T∑
t=1

Pt(c|I, x) (2.1)

Each tree is trained on a different set of randomly synthesized images. A random
subset of 2000 example pixels from each image is chosen to ensure an even distribution
across body parts. Training phase is conducted in distributed manner by training 3 trees
from 1 million images on 1000 core clusters [?].

After predicting the probability of a pixel belonging to a body part, the body parts are
recognized and reliable proposals for the positions of 3D skeletal joints are generated.
These proposals are the final output of the algorithm and used by a tracking algorithm
to self initialize and recover from failure.

Figure 2.13: Joint proposals are derived for various poses. Results of synthetic training
data is shown on the top row, real training data shown in the middle row and failure
modes at bottom. Left column shows a neutral pose as a reference. [?]

Joints Proposal Figure 2.13 shows example results of synthetic and real datasets. In
each example we see the depth image, the derived label of most likely body part, and
the front, right, and top views of the joint proposals overlaid on a depth point cloud.

Skeletal points Finally, the API returns positions and orientations of the skeleton
joints as shown in the figure 2.14. As well as, it returns the lengths of the body seg-
ments such as the distance between elbow and shoulder. Joint positions and orientations
are given in the real world coordinate system. The origin of the system is at the sensor.
+X points to the right, +Y points upward, and +Z points in the direction of increasing
depth.

Hand Tracker Even though NiTE framework can recognize full human body, in this
thesis we attempt to use only hand recognition and tracking due to the computational
limitation of NAO. To start tracking a hand, a focus gesture must be gesticulated. There
are two supported focus gestures: CLICK and WAVE. In the CLICK gesture, the user

16

2.2 Hand Gesture Recognition Background

Figure 2.14: Positions and orientations of the tracked skeleton return by NiTE API. [?]

should hold the hand up and push it towards the sensor, then immediately pull the hand
backwards. In the WAVE gesture, the user should hold the hand up and move it several
times from left to right and back. Once hand is been found and it will be tracked till the
hand leaves the field of view of the camera or hand point is lost due to various factors
such as hand is touching another object or closer to another body part. Figure 2.15
shows how hand points are tracked using NiTE and trail of the hand positions in real
world coordinates are mapped on to the depth image.

Focus gestures Focus gestures of NiTE can be detected even during hand tracking
session. NiTE gestures are derived from a stream of hand points thats records how a
hand moves through space over time. Each hand point is at the center of the hand in
real-world 3D coordinate measured in millimeters. Gesture detectors are sometimes
called point listeners (or point controls) since they analyze the points stream looking
for a gesture. NiTE recommends users to follow these suggestions to gain maximum
efficiency from its API for Hand tracking.

• The hand that performs the gesture must be kept away from the body of the user.

• Palm should be open, fingers pointing up and face the sensor.

17

2.2 Hand Gesture Recognition Background

Figure 2.15: NiTE Hand Tracking application shows the trail of the tracked hand in
different colors. [?]

• The movement should not be too slow or too fast.

• WAVE should consist of at least 5 horizontal movements left-right or right-left.

• CLICK should be at least 20 cm long enough and performed towards the sensor.

• If there is a difficulty in gaining focus, the user must stand closer to the sensor
around at 2m.

2.2.4 Gesture Classification and Prediction

Like most other recognition systems such as speech recognition and biometrics, the tasks
of hand gesture recognition involve modeling, feature extraction, training, classification
and prediction. Though the alternatives such as Dynamic Programming (DP) match-
ing algorithms have been attempted, the most successful solutions involve feature-based
statistical learning algorithms [?]. Previous sections explained how a hand gesture is
modeled, features are extracted from raw depth images, and the following sections dis-
cuss how extracted features are trained, classified and predicted.

In this thesis, we intend to employ a stochastic machine learning technique based on
Adaptive Naive Bayes Classifier with the help of Gesture Recognition Toolkit. ANBC is
an extension to the well-known Naive Bayes, one of the most commonly used supervised

18

2.2 Hand Gesture Recognition Background

learning algorithms that works very well on both basic and more complex recognition
problems.

2.2.4.1 Adaptive Naive Bayes Classifier

ANBC [?] is a supervised learning algorithm that can be used to classify any type of
N-dimensional signal. It is based on simple probabilistic classifier called Naive Bayes
classifier. It fundamentally works by fitting an N-dimensional Gaussian distribution
to each class during the training phase. New gestures can then be recognized in the
prediction phase by finding the gesture that results.

ANBC like Naive Bayes classifier makes a number of basic assumptions with input
data that all the variables in the data are independent. However, despite these naive
assumptions, Naive Bayes Classifiers have proved successful in many real-world classi-
fication problems [?]. It has also been shown in a study that the Naive Bayes Classifier
not only performs well with completely independent features, but also with functionally
dependent features.

ANBC algorithm is based on Bayes theory and gives the likelihood of event A oc-
curring, given the observation of event B. In the equation 2.2, P (A) represents the prior
probability of event A occurring and P (B) is a normalizing factor to ensure that all the
posterior probabilities sum to 1.

P (A|B) =
P (B|A)P (A)

P (B)
(2.2)

Training The weighting coefficient adds an important feature for the ANBC algorithm
as it enables one general classifier to be trained with multidimensional inputs, even if
a number of inputs are only relevant for one particular gesture. For example, if it is
used to recognize hand gestures, the weighting coefficients would enable the classifier
to recognize both left and right hand gestures independently, without the position of
the left hand affecting the classification of a right-handed gesture. For example, hand
gesture recognition using x,y,z position of palms of Left and Right hand will have 6
dimensional sample. In this case left hand gestures will have weights 1,1,1,0,0,0, right
hand gestures will have weights 0,0,0,1,1,1 and both hand gestures will have weights
1,1,1,1,1,1.

Using the weighted Gaussian model, the ANBC algorithm requires G(3N) parame-
ters, assuming that each of the G gestures require specific values for the N-dimensional
µk, σ

2
k and φk vectors where µk, σ2

k, φk are mean, variance and weighting coefficients.

19

2.2 Hand Gesture Recognition Background

Assuming that φk is set by the user, µk and σ2
k values can easily be calculated in a super-

vised learning scenario by grouping the input training data X into a matrix containing
M training examples each with N dimensions, into their corresponding classes. The
values for µ and σ2of each dimension n for each class k can then be estimated by com-
puting the mean and variance of the grouped training data for each of the respective
classes [?].

P (gk|x) =
P (x|gk)P (gk)∑G
i=1 P (x|gi)P (gi)

1 ≤ k ≤ G (2.3)

After the Gaussian models have been trained for each of the G classes, an unknown
N-dimensional vector x can be classified as one of the G classes using the maximum a
posterior probability estimate (MAP). MAP estimate classifies x as the k-th class that
results in the maximum a posterior probability given by the equation 2.3

lnN(x|Φk) 1 ≤ k ≤ G (2.4)

Rejection Threshold Using equation 2.4, an unknown N-dimensional vector x can be
classified as one of the G classes from a trained ANBC model. If x actually comes from
an unknown distribution that has not been modeled by one of the trained classes then, it
will be incorrectly classified against the k th gesture that gives the maximum likelihood
value. A rejection threshold must therefore be calculated for each of the G gestures to
enable the algorithm to classify any of the G gestures from a continuous stream of data
that also contains non-gestural data [?].

Online Training One key element of ANBC is that it can easily be made adaptive.
Adding an adaptive online training phase to the common two-phase (training and predic-
tion) provides some significant advantages for the recognition gestures. During online
training phase the algorithm will not only perform real-time predictions on the contin-
uous stream of input data, but it will also continue to train and refine the models for
each gesture. This enables the user to initially train the algorithm with a low number of
training samples and during the adaptive online training phase, the algorithm can con-
tinue to train and refine the initial models, creating a more robust model as the number
of training samples increases.

Pros / Cons ANBC works well for the classification of static gestures and non-
temporal pattern recognition. However, the main limitation of the ANBC is that, it

20

2.2 Hand Gesture Recognition Background

does not work well when the data you want to classify, is not linearly separable because
it uses a Gaussian distribution to represent each class. Also when ANBC is working
with online training enabled, a small number of incorrectly labeled training examples
can create a loose model that becomes less effective at each update step and ultimately
lead to a poor performance and accuracy.

2.2.4.2 Gesture Recognition Toolkit (GRT)

GRT is a cross-platform open-source C++ library designed and developed mainly by
Nicholas Gillian at MIT Media Lab to make real-time machine learning and gesture
recognition [?]. Emphasis is placed on the ease of use with a consistent, minimalist
design that promotes accessibility while supporting flexibility and customization for
advanced users. The toolkit features a broad range of classification and regression al-
gorithms, and has extensive support for building real-time systems. GRT includes algo-
rithms for signal processing, feature extraction and automatic gesture spotting.

In this thesis, we attempt to take advantage of GRT as framework to carry out most
of the tasks involved in hand gesture recognition. Figure 2.16 shows that GRT provides
the full fledge pipeline to build a real-time gesture recognition system.

Figure 2.16: Stages of Gesture Recognition which are supported by GRT Recognition
Pipeline. [?]

Pipeline GRT provides an API to reduce the need for boilerplate code to perform
common functionality, such as passing data between algorithms or to per-process data
sets. GRT uses an object-oriented modular architecture and it is built around a set of core
modules and a gesture-recognition pipeline. The input to both the modules and pipeline
consists of an N-dimensional double-precision vector, making the toolkit flexible to any
type of input signal. The algorithms can be used as stand-alone classes; alternatively

21

2.2 Hand Gesture Recognition Background

a gesture recognition pipeline can be used to chain modules together to create a more
sophisticated gesture recognition system. Modularity of GRT pipeline offers developers
opportunities to work on each stages of gesture recognition independently. Additionally,
pipeline can be stored and loaded dynamically so that an compiled application can work
in many different configurations.

ClassificationData Accurate labeling of dataset is very critical for machine learning
problems. The toolkit thus contains an extensive support for recording, labeling and
managing supervised and unsupervised datasets for classification, regression and time
series analysis. ClassificationData is the data structure used for supervised learning
problems and for most of the non temporal classification algorithms.

GRT allows us to store and load the training data in GRT format or Comma Sep-
arated Values (CSV). Since the training datasets are stored in human readable format,
it enables us to add more samples which are collected separately or remove false data
from the training dataset.

TrainingDataRecordingTimer Important part of the training phase is recording pos-
itive samples of modeled hand gestures. Hence, GRT provides a feature called Train-

ingDataRecordingTimer that sets recording and preparation time in milliseconds. Once
it is started by calling startRecording(prepationTime, recordTime) method, it waits for
given preparation time before it actually starts to store the data. This feature helps the
trainer get into the right pose before samples are added to the training data and as well
as train all the gestures for the same time duration.

Algorithms GRT features a broad range of machine-learning algorithms such as
AdaBoost, Decision Trees, Dynamic Time Warping (DTW), Hidden Markov Models
(HMM), K-Nearest Neighbor (KNN), Linear and Logistic Regression, Adaptive Naive
Bayes (ANBC), Multilayer Perceptrons (MLP), Random Forests and Support Vector
Machines (SVM) [?].

Null Rejection Another important feature of GRT is Null Rejections threshold. It
means that algorithms can automatically spot the difference between trained gestures
and unintended gestures that can happen when the user moves the hand in freely. It can
be enabled by the method enableNullRejection(true) and the range of the null rejection
region can be set by this method setNullRejectionCoeff(double nullRejectionCoeff) of
the classifier. Algorithm such as the ANBC and N-Dimensional DTW, learn rejection

22

2.2 Hand Gesture Recognition Background

thresholds from the training data, which are then used to automatically recognize valid
gestures from a continuous stream of real-time data.

Figure 2.17: This shows the decision boundaries computed by training six of classifica-
tion algorithms on an example dataset with 3 classes. The top row shows the predictions
of each classifier with null rejection disabled. The bottom row shows the predictions of
each classifier with null rejection enabled with null rejection coefficient of 3.0. [?]

Figure 2.17 shows that the decision boundaries computed by training six of classi-
fication algorithms on an example dataset with 3 classes. After training each classifier,
each point in the two-dimensional feature space is colored by the likelihood of the pre-
dicted class label (red for class 1, green for class 2, blue for class 3). The top row
shows the predictions of each classifier with null rejection disabled. The bottom row
shows the predictions of each classifier with null rejection enabled with a coefficient of
3.0. Rejected points are colored white. Note that both the decision boundaries and null-
rejection regions are different for each of the classifiers. This results from the several
learning and prediction algorithms used by each classifier.

Scaling Normalization Real-time classification faces normalization problems when
the range of training data differ from prediction input. To solve this problems, there
are few solutions such as Z-score Standardization and Feature Scaling. GRT presents a
simple solution called as Minimum-Maximum scaling.

Min-Max scaling rescales the range in [0, 1] or [-1, 1]. Selecting the target range
depends on the nature of the data. Classifiers enableScaling(true) method scales input
vector between the default min-max range that is from 0 to 1. The cost of having this
bounded range is that model will end up with smaller standard deviations, which can
suppress the effect of outliers. Equation 2.5 shows how Min-Max scaling is done.

x′ =
x−min(x)

max(x)−min(x)
(2.5)

23

2.2 Hand Gesture Recognition Background

Pre/Post Processing Modules In many real-world scenarios, the input to a classifi-
cation algorithm must be preprocessed and have salient features extracted. GRT there-
fore supports a wide range of pre/post-processing modules such as Moving Average
Filter, Class Label Filter and Class Label Change Filter, embedded feature extraction
algorithms such as AdaBoost, dimensionality reduction techniques such as Principal
Component Analysis (PCA) and unsupervised quantizers such as K-Means Quantizer,
Self-Organizing Map Quantizer.

There will not be any need of preprocessing modules in this project since raw data
received from depth sensor is processed by NiTE framework. However, post-processing
modules such as Class Label Filter and Class Label Change Filter may be needed for a
reasons that depth sensor samples 30 frames per second, therefore 30 input samples per
second are supplied to the classifier for prediction and the output must be triggered once
for every gesture.

Figure 2.18: GRT Class Label Filter removes the sporadic prediction values and outputs
buffered class label. [?]

Class Label Filter It is a useful post-processing module which can remove erroneous
or sporadic prediction spikes that may be made by a classifier on a continuous input
stream of data. Figure 2.18 that the classifier correctly outputs the predicted class label
of 1 for a large majority of the time that a user is performing gesture 1. However, may be
due to sensor noise or false samples in the training data, the classifier outputs the class
label of 2. In this instance the class label filter can be used to remove these sporadic
prediction values with the output of the class label filter in this instance being 1.

24

2.2 Hand Gesture Recognition Background

Class Label Filter module is controlled through two parameters: the minimum count
value and buffer size value. The minimum count sets the minimum number of label
values that must be present in the buffer to be output by the Class Label Filter. The
size of the class labels buffer is set by the buffer size parameter. If there is more than
one type of class label in the buffer then the class label with the maximum number of
instances will be output. If the maximum number of instances for any class label in the
buffer is less than the minimum count parameter then the Class Label Filter will output
the default null rejection class label of 0.

Figure 2.19: GRT Label Change Filter outputs only when there is change in the predic-
tion. [?]

Class Label Change Filter It is one of the useful post-processing module that trig-
gers when the predicted output of a classifier changes. Figure 2.19shows that, if the
output stream of a classifier is 1,1,1,1,2,2,2,2,3,3, then the output of the filter would be
1,0,0,0,2,0,0,0,3,0. This module is useful to trigger a gesture once, if the user is gestic-
ulating the same gesture for longer time duration. If the user intends to trigger the same
gesture again, then hand position must be changed to another such as pointing the hand
towards the ground, and gesticulate the gesture again.

GUI Figure 2.20 shows GRT-GUI which is an application that provides an easy-to-
use graphical interface developed in C++ to setup and configure a gesture recognition
pipeline that can be used for classification, regression, or time-series analysis. Data and
control commands are streamed in and out of this application as Open Sound Control
(OSC) packets via UDP . Therefore, it acts as a standalone application to record, label,

25

2.3 Summary Background

Figure 2.20: GRT GUI is an standalone application to quick prototype by recording,
labeling, saving, loading, testing the training data and to perform a real-time prediction.
[?]

save, load and test the training data and performs a real-time prediction for the incoming
data, send output to another application.

2.3 Summary

This chapter has discussed the concepts of hand gesture recognition using skeletal points
tracking with the help of depth camera. It has also talked about the specifications of
Aldebaran NAO. Furthermore, It has discussed the features of the machine learning tool
GRT that helps us to carry out the classification and prediction of hand gestures in real
time.

26

Chapter 3

Hand Gesture Recognition for
Human-Robot Interaction

To build an effective and easy to use hand gesture recognition system for NAO, various
tools and technologies are studied during this thesis. The main challenge is to find a so-
lution that can integrate all essential components into a robust system. However, due to
the computational and compatibility limitations of NAO [?], we have faced problems in
implementing few contemplated solutions. Finally, the successful solution in achieving
the goal will be discussed in the following section.

3.1 Implementation

After analyzing the disadvantages of other experimental designs, the final design is cho-
sen to build an efficient real-time hand gesture recognition for human-robot interaction
using skeletal points. Figure 3.1 shows the architecture of the solution that is imple-
mented during this thesis by grouping many components into 4 different modules which
serve several purposes. Each module is implemented in different environment as shown
in the figure and they communicate with one another to complete the data flow. All these
modules use a common configuration file named as hri.json that contains information
such as port number, host name and log path.

3.1.1 Human-Robot Interaction (HRI) Module

HRI module is implemented first to get the raw data from the depth sensor and process
it to track the skeletal joint positions in real world coordinates. It is developed in C++
using a core library called Boost and NiTE 2 framework is used for the purpose of

27

3.1 Implementation Hand Gesture Recognition for Human-Robot Interaction

Figure 3.1: Architecture of the proposed solution to build a real time hand gesture recog-
nition using depth camera.

skeletal joints tracking. This module is deployed on the general purpose computer that
is running inside the robot with necessary libraries and drivers.

Boost is a set of libraries for the C++ programming language that provide support
for tasks and structures such as linear algebra, pseudo random number generation, multi
threading, image processing, regular expressions, and unit testing. It contains over
eighty individual libraries.

HRI module is composed of 3 components which are UDP Server, Gesture and
Skeleton tracker. Figure 3.2 shows the data and control flow of this module where the
user is asked to select Gesture or Skeleton tracker, when the program is started. It creates
2 threads depending on the selection:

• UDP Server thread - Asynchronously send data to the client and thread is always
running.

• Gesture or Skeleton tracker thread - A loop in the thread polls for a new frame
from the depth camera till some key is pressed. If loop is interrupted, then the
thread is exited and finally program is closed.

28

3.1 Implementation Hand Gesture Recognition for Human-Robot Interaction

Gesture and Skeleton tracker serve the purpose in extracting features from the raw
data to implement a hand gesture recognition system. However, Skeleton tracker tracks
15 skeletal points in the human body and that leads to very intensive computation. Due
to processing limitations of NAO, we chose to use Gesture tracker as it tracks only hand
joints. Following sections describe internal working of HRI module.

Figure 3.2: Flow chart illustrates the control and data flow of HRI module.

3.1.1.1 UDP Server

HRI module has to process the raw information from the depth camera and it has to send
it to Brain module for the purpose of gesture recognition. As show in the architecture di-
agram 3.1, Brain module must be connected via Wireless Local Area Network (WLAN).
WLAN at 2.4GHz readily is available on NAO and lead us to a solution, where we have
to choose an UDP protocol to transmit the processed data from depth camera. UDP is
chosen over other protocols because depth camera produces 30 depth images per second
and transferring such a large amount of data using conventional communication tech-
nologies such as TCP will be create much overhead and delay in the communication.

Due to asynchronous requirement of the server, Boost Asio library is used to imple-
ment UDP server. Boost.Asio is a cross-platform C++ library for network and low-level

29

3.1 Implementation Hand Gesture Recognition for Human-Robot Interaction

I/O programming that provides developers with a consistent asynchronous model using
a modern C++ approach.

UDP Server is basically an asynchronous programs that creates an UDP socket and
listens to an port on the local machine. In this case, we have created a common configu-
ration file named as hri.json that contains port numbers for each module in this project.
Therefore, this server listens to the 5005 on NAO and waiting for the clients to connect.

Once the client is connected, it stores the endpoint details of the client such as IP ad-
dress and the port number of the UDP client (Brain module), so that it can communicate
with the Brain module whenever there is some data to be transmitted. Asynchronous
functionality Boost.Asio calls the callback handler only when there is communication
with the clients and waits in the thread for the next communication.

3.1.1.2 Gesture Tracker

Gesture tracker is a component of HRI module that makes use of NiTE framework to
localize the hand of the user in the field of view and track the hand position till the hand
leaves the field of view (FOV) or hand is touching another object or hidden by an object.

It uses HandTracker class of NiTE framework and it needs to go through follow-
ing steps before it can track a hand. Section 2.2.3.2 discusses extensively about the
functionalities of NiTE framework.

• NiTE framework must be initialized using nite::initialize() function.

• Depth camera must be connected and nite::HandTracker must be created using
OpenNI compatible device id. If not, default depth camera will be selected.

• NiTE focus gesture WAVE must be initiated to localize the hand at first.

• nite::HandTrackerFrameRef must be read continuously for a new gesture.

• If WAVE gesture is detected, then hand tracking will be started using the position
of hand that triggered the gesture.

Once the hand is been tracked, the hand will be added an id and it will be added to
HandTrackerFrameRef. NiTE framework allow users to add many number of hands and
it will be tracked till there is enough computation power and hands are not overlapping.
HandTrackerFrameRef contains the array of all active hands and every hand is an object
of nite::HandData. It contains the position of the hand in 3 dimensional float stored in
a class called Point3f.

30

3.1 Implementation Hand Gesture Recognition for Human-Robot Interaction

Unlike nite::UserTracker, HandTracker class can return only the hand position in
the space and it can not specify whether it is a left or right hand. It is very necessary
information for hand gesture training and classification because confused hand names
will lead to a false model of the hand gesture and ultimately resulting in a bad perfor-
mance. Hence, we have implemented a simple logic with the help of an assumption that
user will gesticulate the focus gesture only in the order of right hand first and left hand
second.

However, functionalities gesture tracker are not only to track hand, but also send
these information to Brain module via UDP. Therefore, C++ nite::HandData objects
must be serialized before transmitted over the network. Therefore, we chose JSON
serialization and send them across the network as strings as shown in 3.1.1.2

{ "RIGHT": ["275.456", "339.026", "1841.850"], "LEFT":

["-456.289", "353.880", "1761.360"] }

Furthermore, HRI module send informations such as detected focus gesture and info
messages to Brain module as shown in 3.1.1.2 to be displayed on the control center
dashboard. Info messages helps us to know the status of the hand tracking algorithm
which is the core component of HRI module.

{"GESTURE":"WAVE"} {"GESTURE":"CLICK"} {"INFO": "Found new

hand with id 1"} {"INFO": "LEFT Hand is lost"} {"INFO":

"RIGHT Hand is lost"} {"INFO": "Both hands are lost"}

{"INFO": "LEFT Hand is at FOV"}

3.1.1.3 Skeleton Tracker

Skeleton Tracker is a component of HRI module that is more complex and computa-
tional intensive, since it uses nite::UserTracker to track 15 bone joints of human body.
Like Gesture Tracker in the section 3.1.1.2, this component has to follow few proce-
dure before tracking and it starts with an UDP server to unicast joint positions to Brain
module.

• NiTE framework must be initialized using nite::initialize() function.

• Depth camera must be connected and nite::UserTracker must be created using
OpenNI compatible device id. If not, default depth camera will be selected.

31

3.1 Implementation Hand Gesture Recognition for Human-Robot Interaction

• Pose in front the camera as shown in the figure 3.3 to let the algorithm calibrate
the body position.

• nite::UserTrackerFrameRef must be read continuously for a new user and if a
new user is found, skeleton tracking will be started.

Figure 3.3: Image captured while NiTE tracks 15 skeletal joints of the user using depth
camera Asus Xtion.

Unlike nite::HandTracker, UserTracker class of NiTE uses complex algorithms to
keep tracking the skeleton even when the user poses in many ways. Therefore, it needs
the data provided by NiTE framework which contain models of 1 million training sam-
ples. In addition, UserTracker can return 15 skeletal joints position and orientation and
they are labeled by the joint name. This feature helps us to avoid the implementation to
find the hand name. Moreover, details of joint orientations offer us a chance to calcu-
late positions not only in Cartesian coordinates, but also in spherical coordinates system
which is essential for many complex hand gesture recognition solutions [?]. Further-
more, SkeletonJoint class indicates how sure the NiTE skeleton algorithm is about the
joint position. The value is between 0 and 1, with increasing value indicating increasing
confidence. Section 2.2.3.2 discusses extensively about the algorithm of NiTE.

Finally, Skeleton tracker serializes the C++ nite::UserData objects to JSON and
sends asynchronously to the client for further gesture recognition procedures.

32

3.1 Implementation Hand Gesture Recognition for Human-Robot Interaction

3.1.2 Brain Module

Brain module is the core functional part of this thesis. It is named as Brain since it refers
to the anatomical brain that plays the vital role of the human life in learning, classifying,
predicting and decision making.

Brain module is composed of 3 components which are UDP Client, Brain (Gesture
Recognition Pipeline) and WebSocket Server. Figure 3.4 shows the data flow of this
module where the user is asked to select Prediction or Training or Hand Viewer mode,
when the program is started. It creates a thread and runs a loop on the main thread
depending on the selection:

• UDP Client thread - Asynchronously receiving data from HRI module and thread
is always running.

• Prediction or Training of Hand Viewer on main program thread - Loop in the main
thread run always and check if the Brain module is in prediction or training mode.
If loop is interrupted, then the thread is exited and finally program is closed.

Figure 3.4: Flow chart illustrates the control and data flow of Brain module.

33

3.1 Implementation Hand Gesture Recognition for Human-Robot Interaction

3.1.2.1 UDP Client

Brain module receives processed information such as joint positions, detection of focus
gestures and info messages from the HRI module as UDP stream of JSON strings via
WLAN. Like the UDP Server built inside HRI module, this is also an asynchronous
client that starts at port 5006 and connects to the server by resolving the serverHost-

Name and port number from the common configuration file. Once it is connected, it
receives the data from HRI module, when it is started tracking a hand or skeleton and
asynchronously calls the callback handler.

Since data is transmitted as JSON strings, it has to be parsed and relevant infor-
mations must be extracted. For this purpose RapidJSON parser is used. Data flow of
Brain module is mainly handled in the callback handler of UDP client because it acts
as a source of input. Whenever there is a new data arrived, this asynchronous callback
handler is called and it does the following tasks as shown in the Figure 3.4 :

• Extract only newly received data from the buffer by trimming the JSON

• Parse the trimmed JSON to populate hand data vectors.

• If focus gesture or info messages or only one hand data is received, send it via
WebSocket to the clients

• Check if the module is Prediction or Training or Hand Viewer mode

• In the prediction mode :

– If the positions of both hands are received, predict the class label

– Add predicted class label and maximum likelihood to the sample, and send
it via WebSocket

– If there is a class label not than 0, then send the respective gesture name via
WebSocket

• If it is in the training mode and both hands are received, then add them to the
training data

• If it is in the hand viewer mode, just forward all the data to the clients via Web-
Socket

34

3.1 Implementation Hand Gesture Recognition for Human-Robot Interaction

3.1.2.2 Brain

This is the core component of Brain module that plays a vital role in training, classifying
and predicting the hand gestures. As described in the section 2.2.4.2, this component is
based on the gesture recognition pipeline provided by GRT.

Figure 3.4 shows various tasks involved in training and predicting phase of this mod-
ule. However, GRT pipeline must be configured and customized in order to be a pro-
ductive gesture recognition system.

Classifier ANBC is used in this thesis as described in the section 2.2.4.1. Training data
for the same gesture will vary in range from person to person and position to position.
Therefore the classifier is enabled for Min-Max scaling that is basically a normalization
by rescaling the values between 0 to 1. This is done by calling enableScaling(true)

function of the classifier.

Null Rejection Enabling the scaling with ANBC will classify every input samples to
belong to any of the class and thereby, do not have the ability to detect non-gestures. To
avoid this catastrophe GRT offers Null Rejection features to the algorithms, by this func-
tion enableNullRejection(true) and also provides a function to set how big the rejection
region should be, by setNullRejectionCoeff(1).

Post Processing As discussed in the section 2.2.4.2, prediction output must be post
processed in order to avoid false prediction spikes. Therefore, class label filter is added
to the pipeline by with this function ClassLabelFilter(30,60). Minimum count is set to
30 with the buffer size of 60 for the reason that the user must gesticulate for minimum of
one second since depth camera produces 30 frames per second. Additionally ClassLa-

belChangeFilter() is added so that there is only one output of the predicted class label,
when there is a change in the gesture and all other time it outputs 0, that is reserved for
non-gesture.

Training Data We used ClassificationData data structure of GRT to collect training
data of static gestures. It must be initialized with number of dimensions the samples will
be. In our thesis we modeled hand gestures with two hand positions in 3 dimensional
Cartesian coordinates, therefore training dataset has 6 dimensions. As described in the
section 2.2.4.2, GRT enables us to execute various operations on the training data such
as recording, labeling, partitioning and testing.

35

3.1 Implementation Hand Gesture Recognition for Human-Robot Interaction

Training When Brain is set to training mode, it starts the TrainingDataRecording-

Timer. We have configured 20 seconds recording time and 15 seconds preparation time.
Preparation time helps the trainer to go in front of depth camera and stay in the pose of
the gesture that is going to be recorded. Furthermore, It initializes the Class Label to 1
and it will be increased by one for other classes. Class Label can not be assigned to 0
because GRT reserves it for non-gestures. If positions of left and right hand are received
from the HRI module, Brain starts to add the samples with the chosen Class Label to
the training dataset till the timer is in recording mode and simultaneously it sends to
received samples via WebSocket to the clients to visualize. When the recording timer is
stopped, Brain requests the trainer to choose any of the following options :

• Train the same class again - New samples will be added to the training dataset for
same Class Label.

• Train the next class - Class Label is increased by one and new samples are added.

• Stop training and go to prediction mode - Saves the training dataset to a file named
as hri-training-dataset.txt and trains the pipeline and goes into prediction mode

Prediction When Brain is set to prediction mode, first thing it does, is loading the
training labeled classification data and train the pipeline to create models for each ges-
ture. Second step is to look for any specific pipeline configuration such as classifier
and pre/post processing modules. Such configurations can also be loaded into pipeline
as GRT pipeline files. This feature of GRT offers us an opportunity to run the gesture
recognition application using dynamic configurations. Once Brain starts to receive in-
put samples via UDP, it feeds it to the pipeline to predict. Finally, the prediction results
such as predicted class label, maximum likelihood, class distances and weights are re-
turned by the pipeline. Flexible GRT pipeline provides many more features such as
post-processed and unprocessed prediction results. Therefore, the prediction results for
every input sample can be obtained. The post-processed result will allow Brain to send
the detected gesture only once, even if the user is continuously gesticulating the same
gesture.

3.1.2.3 WebSocket Server

WebSocketServer class is developed using websocketpp C++ library that basically uses
BOOST libraries. It is a simple implementation of WebSocket server that listens to
the port number 5008. The port number can be configured dynamically by loading the

36

3.1 Implementation Hand Gesture Recognition for Human-Robot Interaction

common configuration file. WebSocket class is initialized by UDP Client class and
keeps the server running in a separate thread. Once clients such as CC module and
Command module are connected, it stores the endpoint connection handlers of them for
later communication.

3.1.3 Control Center (CC) Module

Control Center plays an important role in this thesis. It is the eye that visualizes the
internal status of the system. It is first built for the purpose of visually render the skeletal
points of the human body that is being tracked by NiTE. Later, it has become one place
to interact with the whole system.

CC is developed in Javascript with the help of WebGL and jQuery. The cloud com-
puting is day by day pushing computer applications to the Internet, which allows soft-
wares to be operated using internet-enabled devices. Due to this reason browser based
cross-compatible applications are getting popular and that leads to the huge involve-
ment of development in Javascript. Therefore, we chose a cross-compatible platform
that work out of the box than implementing the same in C++ using OpenGL.

Figure 3.5: Control Center displays received data of hand positions and prediction re-
sults

Javascript It is a dynamic programming language whose implementations allow
client-side scripts to interact with the user, control the browser, communicate asyn-
chronously, and alter the document content that is displayed. However, It is also used
in server-side programming with runtime environments such as Node.js, game develop-
ment and the creation of desktop and mobile applications.

37

3.1 Implementation Hand Gesture Recognition for Human-Robot Interaction

ThreeJS It is a lightweight 3D library with a very low level of complexity, written
purely in Javascript that can render 3D objects in various renderer such as canvas, svg,
CSS3D and WebGL. In this thesis, we have chosen WebGL renderer to implement the
Control Center since it is faster than others in rendering tracked skeletal points at 30
frames per second.

WebSocket Client CC receives the data from Brain modules via WebSocket. The
client uses the native Javascript WebSocket implementation that is supported by many
latest browsers. It connects to the WebSocket server that is listening on the port 5008.
When the client receives the data, it updates the data buffer asynchronously.

Architecture Control Center is implemented in MV* (Model View) design pattern
that is quite popular among Javascript developers. Since the requirement of this module
needs many libraries, a dependency injection library called RequireJS is used to load all
the libraries when the application is opened in the browser.

Libraries Along with ThreeJS, libraries such as jQuery, underscore, TrackBallControl
and datGUI are used in this module. jQuery is most common library for Document
Object Model (DOM) manipulation in the browser. Operations on arrays and objects are
made easier with the help of underscore. TrackBallControl allows to do manipulations
such as rotate, revolve and transform the 3D objects which are rendered by WebGL.
datGUI is a lightweight simple library to create GUI elements to build a dashboard in
few lines of code.

Figure 3.6: Control Center renders real time positions of 15 human skeleton joints.

38

3.1 Implementation Hand Gesture Recognition for Human-Robot Interaction

Model and View To avoid complexity, this Javascript application does not have any
sophisticated model. It simply uses an array named skeletonBuffer that holds the JSON
data received via WebSocket. All these actions are carried out in the store of the ap-
plication. View does large part of the work for CC. At first it initializes the DOM and
add GUI elements to it. Then, ThreeJS scene is created with WebGL renderer and adds
a perspective camera, a plane geometry as a base and a triangle to show origin of the
sensor. By default CC is in hand tracking mode and it creates two spheres to visualize
the position of left and right hand. In skeleton tracking mode it creates 15 spheres two
show all the skeletal points that are being tracked by NiTE. Control Center offers us to
replay the positions of joints by storing them to a file and selecting Hand Tracker From

Data option in the GUI. View automatically iterates through all the objects in the array
and renders them at 60 fps.

User Interface (UI) Figure 3.5 the dashboard of the Control Center. Console box is
an UI element that shows all the incoming data via WebSocket. It allows us to scroll
through the data, if there is a necessity to cross check the data. Right bottom shows
Info box which is created for the purpose of showing all intercommunication messages
among all the modules. For example, RIGHT Hand is at FOV is an info message trig-
gered by NiTE to inform that hand is closer to the field of view (FOV) and it may lose
the hand. Left top corner displays two UI elements which are meant to show the pre-
diction result for every input sample and recognized gesture that is triggered only after
gesticulating it for more than one second. Furthermore, top right corner of the dash-
board reveals more internal variables such as WebGL camera positions and real time
hand in 3 dimensional Cartesian coordinates. CC can not only render hand joints, but
also complete human skeleton with 15 skeletal point which are being tracked as shown
in the figure 3.6. It also allows us to save tracking data to a json file and replay them by
choosing appropriate mode from the drop down list on the top right corner.

3.1.4 Command Module

Last but not the least module to complete the functionalities of our hand gesture recog-
nition system is the Command module. All other modules which are described above
need the Command module to interact with the robot.

Command module is developed in Python with WebSocket and NAOqi libraries.
Python is a widely used general-purpose, high-level programming language. Its design
philosophy emphasizes code readability, and its syntax allows programmers to express

39

3.1 Implementation Hand Gesture Recognition for Human-Robot Interaction

3D printing the mount Asus Xtion mounted on NAO

Figure 3.7: 3D printed head mount to support the depth camera on the head of NAO.

concepts in fewer lines of code than would be possible in languages such as C++ or
Java.

Command modules initiates the WebSocket Client and it connects to the Brain mod-
ules WebSocket Server at a given port number by loading the common configuration
file. WebSocket client keeps the main thread run forever and it executes the respective
call back handlers. When there is a new message, it calls the onMessage handler and
parses the received JSON data to a python object. Whenever gesture data is received, it
is translated to a robotic speech and motion via NAOqi proxies.

We have used ALMotions Locomotion Control extensively to move the robot from
one position to another based on the recognized hand gesture such as "Turn Left" or
"Move Right". Additionally, Gesture-To-Gesture actions where a human hand gesture
is translated to the robot hand gesture by using the Joint Control of ALMotion module.

3.1.5 Head Mount

As described earlier in the section 2.1.4, integrated hardwares of NAO Vision are not
sufficient to provide precise three dimensional data to the complex algorithms to track
human skeletal joints. Therefore, Asus Xtion PRO LIVE 3D camera is chosen to be
used for this gesture recognition system. Section 3.1 shows the final architecture that
proposes to mount Asus Xtion on the head of the robot.

3D Printed NAO Xtion Mount We have found a solution that is designed by emotion-
robotics.com. Therefore, we have used their 3D model to print it using MakerBot Repli-

40

3.2 Gesture Recognition Hand Gesture Recognition for Human-Robot Interaction

cator 5th Generation 3D Printer as shown in the figure 3.7. The original base of Asus
Xtion is removed and the camera is screwed with the 3D printed mount, and easily fixed
on the head of the robot.

3.2 Gesture Recognition

Above sections described the necessary tools that are implemented to execute a real
time hand gesture recognition system. In this thesis, we have decided to train the system
with static gestures. However, the system can be easily extended to recognize temporal
gestures with the flexibility of GRT. Initially a set of simple gestures are chosen and the
training data is collected for all those gestures.

3.2.1 Hand Gestures Modeling

In this thesis, we have modeled five static hand gestures involving both the hands of the
user. These are communicative hand gestures and they symbolize few referential action.
Apart from Sign Language used by people with speech disability, various hand gestures
are being used by humans in their day to day living. Figure 3.8 shows the hand signals
used by different personnels in wide variety of application.

Figure 3.8: Non-Verbal hand signals used by different personnels in wide variety of
application. [?]

This thesis focuses on hand gesture recognition to felicitate Human-Robot interac-
tions. One greater application using hand gestures for robots is commanding the robot

41

3.2 Gesture Recognition Hand Gesture Recognition for Human-Robot Interaction

to move to another position. Additionally it could translate the gestures to spoken words
to help people with speech disability.

Therefore, we have chosen five simple static gestures as shown in the figure 3.14
which are conceptualized by the traffic police hand signals. All the gestures are mod-
eled to the direction of the user and they will be understood as mirrored gestures. For
example, left side of the user will be right side to the robot that is facing the user. Addi-
tionally our system makes use of two dynamic gestures of NiTE which are used as focus
gestures to gain control or start hand tracking.

Walk It is gesticulated as shown in the figure 3.12 by holding the left and right hand
up. It refers to an action that keep moving in the forward direction.

Turn Left It is gesticulated as shown in the figure 3.10 by holding the right hand up
and left hand wide open. It refers to an action that turn to left and stay in position.

Turn Right It is gesticulated as shown in the figure 3.9 by holding the left hand up
and right hand wide open. It refers to an action that turn to right and stay in position.

Move Left It is gesticulated as shown in the figure 3.12 by holding the right hand
down and left hand wide open. It refers to an action that turn to left and keep moving in
the forward direction.

Move Right It is gesticulated as shown in the figure 3.12 by holding the left hand
down and right hand wide open. It refers to an action that turn to right and keep moving
in the forward direction.

3.2.2 Training

Our gesture recognition pipeline is configured to have 15 seconds preparation time and
20 seconds recording time with 6 dimensional input of both left and right hands at
positions x, y and z in the Cartesian coordinates. Depth camera is at the origin of the
coordinate system as shown in the figure 3.15.

Brain is set to training mode and CC is started to visualize the hand positions in
order to align the trainer during the preparation time. Each gesture is isolated in time
and gesticulated for 20 seconds. Samples are added to the training dataset and when
the timer stopped the recording, Brain asked the trainer to train the same class again or

42

3.2 Gesture Recognition Hand Gesture Recognition for Human-Robot Interaction

Figure 3.9: Turn Right Gesture Figure 3.10: Turn Left Gesture

Figure 3.11: Move Right Gesture Figure 3.12: Move Left Gesture

Figure 3.13: Walk Gesture

Figure 3.14: In this thesis, five static hand gestures are modeled based on the traffic
police hand signals. [?]

43

3.2 Gesture Recognition Hand Gesture Recognition for Human-Robot Interaction

Figure 3.15: Coordinate system of depth camera according to OpenNI and NiTE frame-
work. [?]

another. Every gesture is assigned a class label from 1 to 5 and the mapping of class
label to hand gesture is stored in a configuration file named signs.json.

Minimum and Maximum Distance Training If the gestures are gesticulated with
only one person at a static position in space in front of the camera, then the recognition
algorithm would not recognize the same gesture gesticulated by another person or the
same person in different position. In order to scale the range of recognition, every ges-
ture is gesticulated in 4 different positions as shown in the plot 3.16 and in all possible
combinations that hands are kept wider or narrower as shown in the plots 3.17. There-
fore, each gesture in the training data is recorded in 4 positions with each for 20 seconds
at 30 samples per second created 2400 samples per gesture.

ANBC is an iterative learning algorithm that improves the classification accuracy
with increase in positive training data. Plot 3.16 shows that the trained data makes our
gesture recognition system to detect gestures at the minimum distance from 1700 mm
to the maximum distance 2500 mm away from the sensor and 800 mm left or right to
the sensor. If the user leaves this field of view, the hand tracking algorithm will lose the
hand or gesture will fall in the Null Rejection region of the classifier.

Training Data Once all the gestures are recorded, they replayed using CC to find out,
if there is any false samples are added to the training data. Such false data leads to an
incorrect model that will ultimately affect the prediction performance. Such samples are
removed from the training data and a final dataset with all 5 classes are stored as hri-

training-dataset.txt. Additionally, some test data for each gesture is recorded in order

44

3.3 Human-Robot Interaction Hand Gesture Recognition for Human-Robot Interaction

Figure 3.16: Training data of walk gesture recorded in 4 different positions with the
minimum distance from 1700 mm to the maximum distance 2500 mm away from the
sensor and 800 mm left or right to the origin of the depth camera.

to evaluate the accuracy of the recognition system. Furthermore, a set of non-gesture
dataset is recorded to test the Null Rejection accuracy of the classifier.

3.2.3 Prediction

After successfully collecting the training data for all the gestures, Brain is set to pre-
diction mode where the pipeline is trained. HRI module starts to track the user’s hand,
Brain predicts a gesture when both the hands are present in the input sample. Figure
3.18 shows Control Center where prediction output for every sample with maximum
likelihood is displayed all the time. The predicted gesture is triggered only after it is
gesticulated for more than one second.

3.3 Human-Robot Interaction

Fundamental goal of this thesis to build a systematic hand gesture recognition system
to interact with machines such as robot or a computer. Interaction with them are mostly

45

3.3 Human-Robot Interaction Hand Gesture Recognition for Human-Robot Interaction

Turn Left Gesture Turn Right Gesture

Move Left Gesture Move Right Gesture

Walk Gesture

Figure 3.17: Normalized training dataset of all 5 gestures are plotted in x and y axis
to show that the position of hands are moved during the recording time to get more
variations of the same gesture.

46

3.3 Human-Robot Interaction Hand Gesture Recognition for Human-Robot Interaction

Figure 3.18: Control Center displays the recognized walk gesture in real time with the
positions of left and right hand in 3 dimensional space.

through displays, keyboards, mouse and touch interfaces. These devices have grown to
be familiar but inherently limit the speed and naturalness. Previous sections have ex-
plained how we have built a system to facilitate a natural interaction with the humanoid
robot called NAO. Following sections illustrate how robot reacts to the hand gestures in
real time with the help of Command module.

3.3.1 Gesture-to-Speech

Easiest translation from the recognized hand gesture is to speak it out loud. We have
used Text-To-Speech (TTS) engine that is built internally inside Aldebaran modules.
When the user gesticulate the focus gesture, NAO says "WAVE" and denoting that hand
tracking is started. Furthermore, the robot says words such as "Walk", "Turn Left",
"Turn Right", "Move Left" and "Move Right", whenever those gestures are recognized.
Additionally, it says info messages such as "Left Hand is lost", "Right Hand is lost" and
"Both hands are lost" to inform the user about the internal status of hand tracking.

3.3.2 Gesture-to-Motion

This thesis is initially conceived as a hand gesture translator just to say the recognized
gestures loud. To make this system more useful, Gesture-to-Motion feature is added to
the Command module. This functionality helps us to move the robot from one position
to another in 2 dimensional space. Therefore each gesture is assigned a locomotion task
as follows:

47

3.3 Human-Robot Interaction Hand Gesture Recognition for Human-Robot Interaction

Figure 3.19: NAOs head Pitch and Yaw angle range
that can be set with the help of joint control methods
of NAOqi API. [?]

Figure 3.20: Virtual NAO
in Aldebaran Choregraphe
with head pitch set to -18
degrees look at the upper
body of the user.

Walk This gesture commands the robot to walk in forward direction with the given
step frequency of 0.5. Robot walks approximately for 5 seconds and waits for the next
command.

Turn Left, Turn Right This gesture commands the robot to rotate itself around z-axis
in the left/right direction for 3 seconds.

Move Left, Move Right This gestures combines Walk and Turn by commanding the
robot to rotate itself around z-axis in the left/right direction for 3 seconds and walk
forward for 5 seconds.

Click This gesture is used to gain the control of the robot, when the robot lost its
balance and is fallen down. When this gesture is executed, robot wakes up from the
sleeping mode and sets itself to the standing position.

Head Position

As described in the section 3.2.2, collection of training data for each gesture is carried
out in 4 different positions in front of the robot. During this phase robot is set to standing
position where the height of the robot is 58 cm. Figure 3.19 shows that NAOs head can

48

3.4 Summary Hand Gesture Recognition for Human-Robot Interaction

be tilted by adjusting the pitch and yaw of the head joint. In order to avoid confusing
camera perspective during the training, NAOs head pitch is set to -18.0 degrees and yaw
is set to 0.0 degree as shown in the figure 3.20. At this angle, field of view of the depth
camera is enough to cover upper body of the user.

However, keeping the head tilted with mounted camera will cause the robot to lose
balance. Therefore, NAOs head position is reset to initial stand position before it ex-
ecutes the received Gesture-to-Motion command. Once the locomotion phase is com-
pleted, it looks back at the user. This functionality greatly improves in locating the user
at any position in the Minimum-Maximum range as show in the plot 3.17.

3.3.3 Gesture-to-Gesture

Apart from offering the essential functionalities, Command module also provides
Gesture-to-Gesture translation where NAO will be imitating hand gestures of the user.
Shoulder Roll and Pitch, Shoulder Roll and Yaw angles are measured by manually by
positioning NAO for every gesture. When a gesture is detected, the Command modules
sets the predefined angles to the shoulder and elbow joints of both the hands of NAO,
therefore, translating the human hand gesture to a robotic hand gesture.

3.4 Summary

In this chapter, we have talked about the implementation details of the hand gesture
recognition system for human-robot interaction using skeletal points tracking algorithm.
Furthermore, we discussed the machine learning techniques which are used to model,
train, classify and predict five static hand gestures. Finally, we explained how these
trained gesture are used to interact with the humanoid robot NAO.

49

Chapter 4

Results

During the training sessions, we have recorded five static gestures in 4 different positions
in front of the robot. NAO is equipped with Asus Xtion and set in "Stand" posture. Head
pitch of NAO is set to -18 degrees to look at the upper body of the user 1800 mm away
from the sensor. First 3 positions of training are recorded at 1800 mm distance from the
sensor in z axis and + /- 800 mm in x axis. Last training position is recorded at 2200
mm distance. Therefore, training data is recorded for 80 seconds of each gesture.

In this chapter, we present the results of real time hand gesture recognition for
Human-robot interaction based on skeletal points tracking using depth camera. Training
data for 5 classes with 11918 samples of 6 dimensional vector are trained with Adap-
tive Naive Bayes Classifier. Min-Max scaling and Null Rejection with coefficient of
2.0 are enabled. Following sections illustrates the results of end-to-end interaction with
robot using five gestures named as Walk, Turn Right, Turn Left, Move Right, Move Left
gestures which are represented by the class labels 1,2,3,4,5 respectively.

4.1 Gesture-To-Motion Results

Following sections shows that NAO is looking at the user to detect any possible gestures.
When it recognized the gesture, Command module commands the robot to execute the
appropriate Gesture-To-Motion task. Additionally, results shows the normalized x, y
positions of left and right. It is plotted using 60 input samples of the detected gesture.
Finally, Control Center displays the prediction results and detected gesture with x,y,z
positions of left and right hand in 3D.

50

4.1 Gesture-To-Motion Results Results

(a) (b)

(d)

(c)

Figure 4.1: (a) User gesticulating Walk gesture. (b) Normalized x,y positions of both
hands. (c) CC dashboard shows the prediction results. (d) NAO executes Gesture-To-
Motion Task.

51

4.1 Gesture-To-Motion Results Results

(a) (b)

(d)

(c)

Figure 4.2: (a) User gesticulating Turn Right gesture. (b) Normalized x,y positions of
both hands. (c) CC dashboard shows the prediction results. (d) NAO executes Gesture-
To-Motion Task.

52

4.1 Gesture-To-Motion Results Results

(a) (b)

(d)

(c)

Figure 4.3: (a) User gesticulating Turn Left gesture. (b) Normalized x,y positions of
both hands. (c) CC dashboard shows the prediction results. (d) NAO executes Gesture-
To-Motion Task.

53

4.1 Gesture-To-Motion Results Results

(a) (b)

(d)

(c)

Figure 4.4: (a) User gesticulating Move Right gesture. (b) Normalized x,y positions of
both hands. (c) CC dashboard shows the prediction results. (d) NAO executes Gesture-
To-Motion Task.

54

4.1 Gesture-To-Motion Results Results

(a) (b)

(d)

(c)

Figure 4.5: (a) User gesticulating Move Left gesture. (b) Normalized x,y positions of
both hands. (c) CC dashboard shows the prediction results. (d) NAO executes Gesture-
To-Motion Task.

55

4.2 Gesture-To-Gesture Results

4.2 Gesture-To-Gesture

Figure 4.6 shows how human hand gestures are translated to robotic hand gestures.
When a gesture is detected, the Command module sets the predefined angles to the
shoulder and elbow joints of both the hands of NAO to perform Gesture-To-Gesture
translation.

Turn Right Turn Left Move Right

Move Left Walk

Figure 4.6: Results of Gesture-To-Gesture translation

4.3 Evaluation

In this section, we present the experiments carried out to evaluate and validate our sys-
tem to recognize hand gestures using skeletal points. The goal is to demonstrate the
effectiveness of the classifier and to evaluate its potential for real time prediction. In
the classification phase, input samples are normalized using Min-Max Scaling and Null

56

4.3 Evaluation Results

Rejection is enabled to detect non-gestures. Therefore, the evaluation demonstrates the
prediction accuracy of ANBC with various null rejection coefficient and the comparison
it with other supervised learning classifier such as Minimum Distance (MinDist).

Class Label Left X Left Y Left Z Right X Right Y Right Z
1 0.55 0.76 0.76 0.57 0.76 0.78
2 0.48 0.73 0.78 0.75 0.51 0.79
3 0.36 0.42 0.78 0.67 0.8 0.8
4 0.58 0.13 0.73 0.79 0.57 0.79
5 0.29 0.52 0.79 0.58 0.24 0.72

Table 4.1: Normalized mean values of 3 dimensions of left and right hand

Class Label Left X Left Y Left Z Right X Right Y Right Z
1.000 0.261 0.116 0.079 0.225 0.092 0.083
2.000 0.189 0.086 0.075 0.149 0.053 0.080
3.000 0.178 0.072 0.088 0.141 0.079 0.093
4.000 0.182 0.060 0.076 0.159 0.070 0.089
5.000 0.128 0.102 0.088 0.114 0.061 0.083

Table 4.2: Standard deviations of 3 dimensions of left and right hand

4.3.1 Mean and Standard Deviation

During the training phase, first all the input samples are normalized with the range from
0 to 1 and then GRT computes mean µ and standard deviation σ to create a model for
each class. During the prediction phase, it basically computes the maximum a posterior
probability of an input vector belonging to any of the trained class. Figure 4.7 shows the
mean positions of left and right hand for every gesture. Table 4.1 and 4.2 show mean
and standard deviations of the labeled training data of all the five classes.

4.3.2 Classification and Prediction

Our gesture recognition pipeline is trained with 11918 input samples of 6 dimensional
vector for 5 classes. Classes are labeled as 1,2,3,4,5 and they represent Walk, Turn
Right, Turn Left, Move Right, Move Left gestures respectively. Class label 0 is reserved
for non-gesture by GRT. We have carried out experiments to evaluate the classifica-
tion, prediction and post processing efficiency of our system. Figure 4.8 show change
is positions of left and hand in Cartesian coordinates while test data is recorded and
corresponding prediction for every input sample.

57

4.3 Evaluation Results

Figure 4.7: Left and right hand position for each gesture using normalized mean values

Class 1 Class 2 Class 3 Class 4 Class 5
Precision 0.990 0.969 0.996 1.000 1.000

Recall 0.937 0.949 0.939 0.972 0.958
F-measure 0.963 0.959 0.967 0.986 0.978

Table 4.3: Precision, Recall and F-Measure calculated by validating 10% of training
dataset. ANBC Classifier trained with Null Rejection coefficient 2.0

Test dataset is a 10% of training dataset and it is chosen randomly from class. Test
dataset is validated against the remaining training dataset, therefore, Precision, Recall,
F-Measure and Confusion Matrix are computed. Table 4.3 and 4.4 show the results of
prediction using ANBC with null rejection coefficient 2.0. Figure 4.8 shows the plot of
normalized distances of x,y,z axes of both hands from the test data and their prediction
in real time.

Non-Gesture Class 1 Class 2 Class 3 Class 4 Class 5
Non-gesture 0.000 0.000 0.000 0.000 0.000 0.000

Class 1 0.032 0.937 0.032 0.000 0.000 0.000
Class 2 0.043 0.009 0.949 0.000 0.000 0.000
Class 3 0.061 0.000 0.000 0.939 0.000 0.000
Class 4 0.023 0.000 0.000 0.005 0.972 0.000
Class 5 0.042 0.000 0.000 0.000 0.000 0.958

Table 4.4: Confusion Matrix calculated by validating 10% of training dataset. ANBC
Classifier trained with Null Rejection coefficient 2.0

58

4.3 Evaluation Results

4.3.3 Prediction Accuracy Vs Null Rejection Accuracy

Classifiers of GRT offers various customization that could produce different results for
the same test data. Accuracy of a gesture recognition system does not depend only on
th precise predictions of trained gestures, but also differentiating them from unintended
hand gestures. GRT allows us to set null rejection coefficient for the classifier. Eval-
uation results are obtained by computing accuracies of 5 trained gestures using ANBC
with varying null rejection coefficient from 0 to 10.

Figure 4.9 shows that increase in null rejection coefficient causes an increase in the
accuracy of trained gestures, however, causes a decrease in the accuracy of non-gesture.
Therefore, it is optimal to use a null rejection coefficient of 2.0 with ANBC.

Figure 4.10 shows some interesting results of Minimum Distance classifier with 4
clusters. Figure shows that prediction results are unpredictable as there is increase in
null rejection coefficient. However, it produces accuracy above 95% with null rejection
coefficient from 2.0 till 4.0. This shows that MinDist could be a better alternative to
ANBC.

59

4.3 Evaluation Results

60

4.3 Evaluation Results

Figure 4.8: Prediction results of test data.

Figure 4.9: Prediction vs Null Rejection of ANBC

Figure 4.10: Prediction vs Null Rejection of MinDist

61

Chapter 5

Conclusion and Future work

During this thesis, we have proposed a promising system to recognize hand gestures
based on skeletal points tracking using depth camera. This system is built for the purpose
of human-robot interaction (HRI) with the humanoid robot named as NAO. We have
validated this approach by training the system with five static gestures and obtained
results as shown in the chapter 4.

We have partitioned our goal into 4 modules and reached the goal by implementing
them in a decoupled environment, and finally, integrated all of them into one system.
We have shown that proposed approach is sufficiently robust and flexible to deal with
static hand gestures.

Human-Robot Interaction (HRI) module deals with integrating the depth camera into
the robot and processing the depth information to track the skeletal points of the user,
and finally send them via network to the Brain module. Brain module supports the core
functionalities of this system by receiving the skeletal point information of the user, and
recording them as training data in the training mode or computing the prediction results
in the prediction mode. Control Center (CC) module plays vital role in visualizing these
interactions, therefore, it is considered as the eye of the system. Finally, Command
module comprehends the predicted gesture and translating them to a robotic Motion or
Speech or Gesture itself.

Finally, we have carried out several experiments and provided the results which il-
lustrate the robustness of the system. Furthermore, we have done evaluations on the test
data and plotted them on graph to visually understand the performance of the system.

62

5.1 Discussion Conclusion and Future work

5.1 Discussion

We have faced issues in implementing few contemplated solutions due to various limita-
tions. Following section discusses about few experimental designs which are conceived
during thesis.

Everything On-Board

First experiment design is conceived in a way that depth camera, skeletal joint tracking,
gesture recognition infrastructure and robot motion will be embedded into the on-board
computer of NAO. However, gesture recognition infrastructure is composed of compu-
tationally intensive machine learning processes and along with skeletal joint tracking by
NiTE had pushed NAO to full CPU load consistently [?].

Extending NAO with Single Board Computer

In order to overcome the computational limitation of NAO, another experimental design
is contemplated that the robot will be extended as shown in the figure 5.1 with a pow-
erful Single Board Computer such as pcDuino or RaspberryPi. However, Asus Xtions
higher power consumption of 2.5 Watts with weight of 250 grams, pcDuinos power
consumption of 2A at 5VDC with weight of 100 grams and additional weight by 3D
printed mounts, heat sinks and wires will make NAO heavier and ultimately results in
poor motion performances and higher power consumption.

Figure 5.1: 3D printed mount to extend NAO with an external Single Board Computer.
[?]

63

5.2 Future Work Conclusion and Future work

Everything Off-Board

This experimental design pushes all the components to an off-board computer that could
be a PC connected with depth camera at a fixed location. User will gesticulate in front
of the camera and all processing will be done on PC. Finally predicted gesture will be
transformed into a motion and voice, and it will be sent to NAO via Aldebaran proxies
using WLAN. This design completely decouples the robot from other components and
degrades the natural interaction between human and the robot. However, this design
suits applications for indoor navigation and localization of NAO [?].

Summary

After analyzing the disadvantages of these experimental designs, the final design that
was implemented, integrates depth camera into NAO with on-board skeletal tracking
application and off-board gesture recognition algorithm. If the computational limitations
of NAO are mitigated, Everything On-Board design would be better solution to make
NAO completely autonomous while recognizing the hand gestures.

5.2 Future Work

The proposed design for gesture recognition based on skeletal points tracking using
depth camera can be improved in several ways. In this section, we overview the future
work by discussing the limitations of the proposed methods and proposing the alterna-
tives.

• Skeleton Joints : Due to computational limitations of NAO, in this thesis, we have
used only hand joints of the user to train and classify the gestures. Classification
based on positions of only hand joints does not allow us to train many gestures
because the gesture model results in higher rate of confusion. For instance, in
Cartesian coordinates "Hands Up" gesture trained at different distances from the
sensor will be confused with "Hands Wide". Therefore, we propose to make use
of other skeleton joints such as shoulder and arm to calculate the orientation of
hand in polar coordinates [?].

• Temporal Gestures : During this thesis, we have trained our system to recognize
only static gestures which imply an action such as traffic police signals. How-
ever, human natural interaction is comprised of many more sophisticated dynamic

64

5.2 Future Work Conclusion and Future work

gestures. Therefore, we propose to extend this system with Dynamic Time Warp-
ing classifier of GRT with Time-Series-Classification data to recognize temporal
gestures.

• Computational Limitations of NAO : In this thesis, HRI module is deployed
to general purpose computer of NAO. HRI module is responsible for tracking
the hand or full skeleton joints with the help of NiTE framework. NiTE uses
computationally intensive algorithms and causes higher CPU utilization of NAO.
Therefore, we propose to transmit the depth information from OpenNI device
completely to NiTE application on an off-board computer. This could be achieved
by using Robot Operating System (ROS) framework that already has a solution to
transmit depth information via network.

• Graphical User Interface : Since the components of this system are modular-
ized and developed independently, the development environment varies with each
other. Even though WebGL is easier and flexible graphics library, it takes a lot
of processing power as it runs on the browser. Instead of using several program-
ming languages, the system could be implemented with C++ GUI using QT or
Microsoft Visual C++ and OpenGL. We propose to integrate the existing code
into such framework to build this system as standalone application.

• Networking : 4 modules of this system is connected via several networking com-
ponents such as UDP Server-Client, Websocket Server-Client and NAOqi proxy.
Server-Client networking topology involving different communication protocol is
a big limitation, since every module have implemented their own server or client
functionalities of UDP or WebSocket. Furthermore, data is serialized as JSON
strings and must be parsed at the receiver side to extract the data. Hence, we pro-
pose Open Sound Control (OSC) protocol that covers all these requirements in
one framework with distributed networking topology.

65

List of Figures

2.1 The body construction of NAO V5. [?] 5
2.2 Standing, Sitting and Crouching postures of virtual NAO using AL-

RobotPosture module. [?] . 5
2.3 Stereo broadcast system of NAO using 2 loudspeakers. [?] 6
2.4 OpenNI compatible Asus Xtion PRO LIVE is a commercial depth cam-

era that can capture both RGB and depth image. [?] 7
2.5 Depth Image captured by Asus Xtion PRO LIVE using OpenNI. The

darker the color of a pixel, the farther it is from the sensor. [?] 8
2.6 NAOqi modules form a tree of methods attached to modules, and mod-

ules attached to a broker. Thus, NAOqi Broker (proxy) can be used to
remotely invoke any attached methods. [?] 9

2.7 Types of Spatial Gesture Modeling. [?] 10
2.8 The taxonomy of Hand Gestures. [?] 11
2.9 PrimeSense architecture shows that OpenNI processes depth data from

the depth camera in thee lower layer, computer vision algorithm NiTE
as middleware and in the higher layer end-user applications. [?] 13

2.10 Skeleton Tracking algorithm processes a depth image and a per-pixel
body part distribution is inferred, and finally, 3D joints proposals are
made for 15 points in human skeleton. [?] 14

2.11 Features are located in depth image and labeled. [?] 15
2.12 Randomized decision forest algorithm showing the branching trees with

blue as split node and green as leaf node. [?] 15
2.13 Joint proposals are derived for various poses. Results of synthetic train-

ing data is shown on the top row, real training data shown in the middle
row and failure modes at bottom. Left column shows a neutral pose as
a reference. [?] . 16

2.14 Positions and orientations of the tracked skeleton return by NiTE API. [?] 17

66

LIST OF FIGURES LIST OF FIGURES

2.15 NiTE Hand Tracking application shows the trail of the tracked hand in
different colors. [?] . 18

2.16 Stages of Gesture Recognition which are supported by GRT Recogni-
tion Pipeline. [?] . 21

2.17 This shows the decision boundaries computed by training six of classi-
fication algorithms on an example dataset with 3 classes. The top row
shows the predictions of each classifier with null rejection disabled. The
bottom row shows the predictions of each classifier with null rejection
enabled with null rejection coefficient of 3.0. [?] 23

2.18 GRT Class Label Filter removes the sporadic prediction values and out-
puts buffered class label. [?] . 24

2.19 GRT Label Change Filter outputs only when there is change in the pre-
diction. [?] . 25

2.20 GRT GUI is an standalone application to quick prototype by recording,
labeling, saving, loading, testing the training data and to perform a real-
time prediction. [?] . 26

3.1 Architecture of the proposed solution to build a real time hand gesture
recognition using depth camera. 28

3.2 Flow chart illustrates the control and data flow of HRI module. 29
3.3 Image captured while NiTE tracks 15 skeletal joints of the user using

depth camera Asus Xtion. 32
3.4 Flow chart illustrates the control and data flow of Brain module. 33
3.5 Control Center displays received data of hand positions and prediction

results . 37
3.6 Control Center renders real time positions of 15 human skeleton joints. . 38
3.7 3D printed head mount to support the depth camera on the head of NAO. 40
3.8 Non-Verbal hand signals used by different personnels in wide variety of

application. [?] . 41
3.9 Turn Right Gesture . 43
3.10 Turn Left Gesture . 43
3.11 Move Right Gesture . 43
3.12 Move Left Gesture . 43
3.13 Walk Gesture . 43
3.14 In this thesis, five static hand gestures are modeled based on the traffic

police hand signals. [?] . 43

67

LIST OF FIGURES LIST OF FIGURES

3.15 Coordinate system of depth camera according to OpenNI and NiTE
framework. [?] . 44

3.16 Training data of walk gesture recorded in 4 different positions with the
minimum distance from 1700 mm to the maximum distance 2500 mm
away from the sensor and 800 mm left or right to the origin of the depth
camera. 45

3.17 Normalized training dataset of all 5 gestures are plotted in x and y axis
to show that the position of hands are moved during the recording time
to get more variations of the same gesture. 46

3.18 Control Center displays the recognized walk gesture in real time with
the positions of left and right hand in 3 dimensional space. 47

3.19 NAOs head Pitch and Yaw angle range that can be set with the help of
joint control methods of NAOqi API. [?] 48

3.20 Virtual NAO in Aldebaran Choregraphe with head pitch set to -18 de-
grees look at the upper body of the user. 48

4.1 (a) User gesticulating Walk gesture. (b) Normalized x,y positions of
both hands. (c) CC dashboard shows the prediction results. (d) NAO
executes Gesture-To-Motion Task. 51

4.2 (a) User gesticulating Turn Right gesture. (b) Normalized x,y positions
of both hands. (c) CC dashboard shows the prediction results. (d) NAO
executes Gesture-To-Motion Task. 52

4.3 (a) User gesticulating Turn Left gesture. (b) Normalized x,y positions
of both hands. (c) CC dashboard shows the prediction results. (d) NAO
executes Gesture-To-Motion Task. 53

4.4 (a) User gesticulating Move Right gesture. (b) Normalized x,y positions
of both hands. (c) CC dashboard shows the prediction results. (d) NAO
executes Gesture-To-Motion Task. 54

4.5 (a) User gesticulating Move Left gesture. (b) Normalized x,y positions
of both hands. (c) CC dashboard shows the prediction results. (d) NAO
executes Gesture-To-Motion Task. 55

4.6 Results of Gesture-To-Gesture translation 56
4.7 Left and right hand position for each gesture using normalized mean

values . 58
4.8 Prediction results of test data. 61
4.9 Prediction vs Null Rejection of ANBC 61

68

LIST OF FIGURES LIST OF FIGURES

4.10 Prediction vs Null Rejection of MinDist 61

5.1 3D printed mount to extend NAO with an external Single Board Com-
puter. [?] . 63

69

List of Tables

2.1 NAO V5 specification. [?] . 6
2.2 Asus Xtion PRO LIVE specification. [?] 7

4.1 Normalized mean values of 3 dimensions of left and right hand 57
4.2 Standard deviations of 3 dimensions of left and right hand 57
4.3 Precision, Recall and F-Measure calculated by validating 10% of train-

ing dataset. ANBC Classifier trained with Null Rejection coefficient 2.0 58
4.4 Confusion Matrix calculated by validating 10% of training dataset.

ANBC Classifier trained with Null Rejection coefficient 2.0 58

70

Abbreviations

HRI Human-Robot Interaction
OpenNI Open Natural Interaction
NiTE Natural Interaction Technology for End-user
GRT Gesture Recognition Toolkit
ANBC Adaptive Naive Bayes Classifier
CC Control Center
UDP User Datagram Protocol
WLAN Wireless Local Area Network
FOV Field Of View
JSON JavaScript Object Notation
DOF Degrees Of Freedom
TTS Text-To-Speech
API Application Program Interface
DP Dynamic Programming
MAP Maximum A Posterior Probability
CSV Comma Separated Values
DTW Dynamic Time Warping
HMM Hidden Markov Models
KNN K-Nearest Neighbor
SVM Support Vector Machines
PCA Principal Component Analysis
GUI Graphical User Interface
IDE Integrated Development Environment

71

Appendix A

Toolchain

During the implementation of this thesis, many tools are used for various purposes.
Every module in this thesis uses different programming language, therefore, different
toolchains are used. Following sections talk about the tools that are used to develop,
build, deploy and document this thesis work.

Develop

Xcode Core functionalities of this thesis are developed in C++ on Mac OSX. There-
fore, Xcode was used to develop HRI and Brain module. Xcode is an IDE containing a
suite of software development tools developed by Apple for developing software for OS
X and iOS.

WebStorm Control Center module was developed in Javascript with the help of a
popular IDE for Web development called as WebStorm. It is a commercial IDE for
JavaScript, CSS and HTML built on JetBrains IntelliJ IDEA platform.

PyCharm Command module was developed in Python using an IDE name as Py-
Charm. It is implemented by a company called JetBrains and it provides code analy-
sis, a graphical debugger, an integrated unit tester and supports web development with
Django.

Build

Javascript and Python They are traditionally implemented as interpreted languages
and therefore they do not need any special compilers to build them. Control Center mod-

72

Toolchain

ule needs just a latest browser with WebSocket and WebGL support to run the Javascript
code. Python binary is available is most modern operating systems and we used Python
version 2.7.6 to run Command module.

C++ The code that was implemented in C++ used 2 different compilers to build it,
because the development was done on 64-bit Mac operating system and target system is
a 32-bit Gentoo Linux operating system.

Clang and Xcode Development code is built using Clang with LLVM libc++ Stan-
dard library. Clang is a compiler developed by Apple for C, C++, Objective-C and
Objective-C++ programming languages. Build settings such as header, library search
paths, macros, environment variables and linking are configured using Xcode.

GCC and Cmake Production code is built using GNU Compiler Collection
(GCC) with libstdc++ GNU++11 Standard library. It is a compiler system produced by
the GNU Project supporting various programming languages such as C, C++, Objective-
C, Objective-C++, Fortran, Java, Ada, and Go. Build settings such as header, library
search paths, macros, environment variables and linking are configured using Cmake.
CMake is cross-platform free and open-source software for managing the build process
of software using a compiler-independent method.

The repository is cloned on OpenNAO and then HRI module is built as shown in
A and then the executable is copied to NAO OS. However, a patch as described in the
section A must be applied on OpenNAO and NAO OS to build the sources.

Clone the source repository

git clone git@github.com:AravinthPanch/gesture-recognition

-for-human-robot-interaction.git ~/hri

Install dependencies on Mac OSX

xcode-select --install

brew update; brew install git boost cmake

cd ~/hri/source/human-robot-interaction

sudo cp lib/OpenNI2/libOpenNI2.dylib /usr/lib

sudo cp lib/NiTE2/libNiTE2.dylib /usr/lib

sudo cp lib/NiTE2/NiTE.ini /usr/lib

sudo cp -R lib/NiTE2/NiTE2 /usr/lib

73

Toolchain

Install dependencies on 64-bit Ubuntu

sudo apt-get update

sudo apt-get install git build-essential cmake libboost-all-dev

cd ~/hri/source/human-robot-interaction

sudo cp lib/OpenNI2/libOpenNI2.so /usr/lib

sudo cp lib/NiTE2/libNiTE2.so /usr/lib

sudo cp lib/NiTE2/NiTE.ini /usr/lib

sudo cp -R lib/NiTE2/NiTE2 /usr/lib

On OpenNAO / NAO OS

cd /source/human-robot-interaction

sudo cp lib/NiTE2/libNiTE2-32.so /usr/lib/libNiTE2.so

sudo cp lib/NiTE2/NiTE.ini /usr/lib

sudo cp -R lib/NiTE2/NiTE2 /usr/lib

Build it on Mac OSX / Ubuntu / OpenNAO

cd ~/hri/source/human-robot-interaction

mkdir build; cd build

cmake ..

make

Patch

OpenNAO / NAO OS Aldebaran provides an image of the NAOs operating system
named as OpenNAO to use the robotic system virtually and it can run in a virtual ma-
chine in any host. OpenNAO is 32-bit Gentoo Linux modified by Aldebaran for Intel
Atom Processor with i686 Architecture.

Emerge Emerge is the package manager for Gentoo Linux and Portage is the package
tree. Aldebaran forces users not to update Emerge to avoid conflict with Aldebaran
modules. Portage tree used with NAO OS is last updated on 11 Jan 2012.

GCC 4.5.3 Due to outdated packages on OpenNAO, GCC version is 4.5.3 and C++
library version is libstdc++.so.6.0.14. NiTE middleware library (libNiTE2.so) was built
by PrimeSense using higher version of GCC (higher than GLIBCXX_3.4.14 or lib-

74

Toolchain

stdc++.so.6.0.14). Therefore, building HRI module on OpenNAO will throw an error
while linking libNiTE2.so, /usr/lib/libstdc++.so.6: version GLIBCXX_3.4.15 not found

This issue was solved by finding higher version of libstdc++ from debian repository
for 32-bit architecture and copying that to /usr/lib folder on OpenNAO/NAO OS and
linking current libstdc++ to the copied version. Repository of our thesis contains the
required version of libstdc++. Following shell commands show how it must be patched
on OpenNAO or NAO OS to run HRI module without any errors.

On OpenNAO/NAO OS, execute the following to apply the patch

cd ~/hri/source/human-robot-interaction

sudo cp lib/libstdc++.so.6.0.16 /usr/lib

sudo rm libstdc++.so

sudo ln -s libstdc++.so.6.0.16 libstdc++.so

This command should show versions upto GLIBCXX_3.4.16

strings /usr/lib/libstdc++.so.6 | grep GLIBC

Version Control

The Proposal till the final results of a project goes through many iterations or modi-
fication of the source files. Such changes are intentional and sometimes they are ac-
cidental. Therefore, source files of this thesis are stored and tracked using a version
control system called Git. Git is a version control is a system that records changes to
a file or set of files over time. To avoid accidental lose of source files, free git on-
line service such as GitHub allows us to store them in a remote repository that can be
cloned from anywhere via Internet. https://github.com/AravinthPanch/

gesture-recognition-for-human-robot-interaction is the link to the
online repository that contains all the informations regarding this thesis.

Data Analysis

During this thesis work, significant amount (8 MB) of datasets are collected. The
datasets contain training data of gestures, prediction results, validation datasets which
are recorded to train, test and evaluate the hand gesture recognition system. This infor-
mation must be analyzed and studied statistically. Hence, MATLAB was used to plot
the data as shown in the graph 3.17,

75

https://github.com/AravinthPanch/gesture-recognition-for-human-robot-interaction
https://github.com/AravinthPanch/gesture-recognition-for-human-robot-interaction

	 Statement of Authorship
	 Abstract
	 Acknowledgments
	 Contents
	1 Introduction
	1.1 Goal
	1.2 Outline

	2 Background
	2.1 NAO - The Humanoid Robot
	2.1.1 Body
	2.1.2 Motion
	2.1.3 Audio
	2.1.4 Depth Sensor
	2.1.5 Computing

	2.2 Hand Gesture Recognition
	2.2.1 Gesture Modeling
	2.2.2 Gestural Taxonomy
	2.2.3 Feature Extraction
	2.2.3.1 OpenNI 2
	2.2.3.2 NiTE 2
	2.2.3.3 Skeletal Points Tracking Algorithm

	2.2.4 Gesture Classification and Prediction
	2.2.4.1 Adaptive Naive Bayes Classifier
	2.2.4.2 Gesture Recognition Toolkit (GRT)

	2.3 Summary

	3 Hand Gesture Recognition for Human-Robot Interaction
	3.1 Implementation
	3.1.1 Human-Robot Interaction (HRI) Module
	3.1.1.1 UDP Server
	3.1.1.2 Gesture Tracker
	3.1.1.3 Skeleton Tracker

	3.1.2 Brain Module
	3.1.2.1 UDP Client
	3.1.2.2 Brain
	3.1.2.3 WebSocket Server

	3.1.3 Control Center (CC) Module
	3.1.4 Command Module
	3.1.5 Head Mount

	3.2 Gesture Recognition
	3.2.1 Hand Gestures Modeling
	3.2.2 Training
	3.2.3 Prediction

	3.3 Human-Robot Interaction
	3.3.1 Gesture-to-Speech
	3.3.2 Gesture-to-Motion
	3.3.3 Gesture-to-Gesture

	3.4 Summary

	4 Results
	4.1 Gesture-To-Motion Results
	4.2 Gesture-To-Gesture
	4.3 Evaluation
	4.3.1 Mean and Standard Deviation
	4.3.2 Classification and Prediction
	4.3.3 Prediction Accuracy Vs Null Rejection Accuracy

	5 Conclusion and Future work
	5.1 Discussion
	5.2 Future Work

	 Bibliography
	 List of Figures
	 List of Tables
	 Abbreviations
	 Appendix
	A Toolchain

