
DAInamite

Team Description 2014

Axel Heßler, Yuan Xu, Erdene-Ochir Tuguldur and Martin Berger
{axel.hessler, yuan.xu, tuguldur.erdene-ochir,

martin.berger}@dai-labor.de
http://www.dainamite.de

DAI-Labor, Technische Universität Berlin, Germany

Abstract. This document describes the progress of the team DAInamite
from DAI-Lab, TU-Berlin (Germany) regarding the SPL. We give a brief
overview of the team’s history, constitution, our general architecture, its
relevant components (motion, vision, and behavior), as well as employed
tools, and point out recent work.

1 Introduction

Team DAInamite’s origin lies within the 2D soccer simulation league, in which
it participated a few times since 2006 [1–4]. DAInamite’s first appearance in
the SPL league was at the German Open 2012 in Magdeburg. And its first
participation in the world championship in the SPL was in RoboCup 2013 in
Eindhoven [5], reaching the quater finals.

In addition to C++, Python is mainly used in the team’s code. The time-
critical components for motion, and vision are implemented in C++. The remain-
ing modules such as localization, behavior, and ball-tracking are implemented
in Python.

2 Team Constitution

The team is constituted of undergradutes, graduate students, and postdocs of TU
Berlin, mainly from faculty IV (CS&EE) 1. The team is hosted at the chair Agent
Technologies in Business Applications and Telecommunication (AOT) and the
DAI-Laboratories (DAI-Lab) at TU Berlin. Prof. Sahin Albayrak is the head of
chair AOT and founder and head of the DAI-Lab. Concrete research interests of
the team members are agent-oriented software engineering, autonomous systems,
cooperation & coordination, and human-robot-interaction.

1 http://www.tu-berlin.de, http://www.dai-labor.de, http://www.aot.tu-berlin.de/,
http://www.dainamite.de



3 Architecture

We are using Aldebaran’s NAOqi architecture as the basis, to benefit from the
following features: Call functions in both C++ and Python, and the ability to
execute functions also remotely over the network.

To archive higher computational performance during soccer games, when the
system is run as a whole, we embed the Python code (using Boost Python) as a
local module into NAOqi’s process to remove communication overhead.

Our main policy was to first add missing functionality as necessary and then
replace modules to imporve performance. Depending on performance require-
ments these modules are written in either Python or C++.

3.1 Motion

We developed our own motion module in C++ for better performance in soccer
games. Especially, we are using a fast (20 cm/s) omni-directional walk based on
Linear Inverted Pendulum [6].

Fig. 1. Architecture of motion module.

The motion module is compatible with the API of the original motion mod-
ule, shipped by Aldebaran. The basic API and functionalities (such as Self-
collision avoidance, Smart Stiffness, etc.) of ALMotion are implemented, so our
motion module can serve as an enhanced replacement of ALMotion. Additionally,
our motion module provides to other modules odometry data, and homogenous
transformation matrices for both cameras, derived from the robot’s configura-
tion.

In order to test and debug our motion module easily, we divided it into several
different sub-modules, see Figure 1. As the core part, DAIMotion can run as a
local or a remote module. It accesses the DCM through shared memory when it
is run locally on the robot; and data is communicated via NAOqi when it is run
with recorded logfiles or the SimSpark simulator.



3.2 Vision

Our team uses a vision algorithm strongly inspired by [7]. Like our motion mod-
ule, the vision module is also implemented in C/C++ and replaces the Aldebaran
video device module. To accelerate image aquisition, we are using Video4Linux
to capture images from both cameras in parallel.

Fig. 2. Original image (left) and a visualization of the processing results (right) for
a sample image. Detected elements are highlighted: Field border (magenta) and field
pixels, goal posts (yellow), line-segments (white), and ball (red).

Currently, the vision module is able to detect goal posts, ball, field lines, field
border, and obstacles. Visual obstacle detection is done using blob detection on a
downsampled image, treating regions with a color that differs from the detected
field color as obstacles, ignoring areas of prior detected objects (i.e. goal posts
and lines). An exemplary result of the vision processing is pictured in figure 2,
where detected entities are highlighted in different colors. These results are then
written into the agent’s blackboard memory managed by Aldebaran’s module
(ALMemory), from which other modules, such as localization, can retrieve them.

Furthermore, the vision module provides methods for debugging and config-
uration, such as setting camera parameters and enabling or disabling processing
of either camera.

3.3 Ball tracking

Like other high level components, the ball tracking is also implemented in Python.
Our vision module fails to detect a ball if its present in the image, not further
away than six meters, and not heavily occluded. Because of the magenta jerseys
introduced in RoboCup 2013 [8], we adjusted the ball detection to cope with
multiple red peaks on the field. Within the area of each detected obstacle the
ball detection is run additionally and these hypotheses are checked and filtered
afterwards.

If no ball is present in the current image, the vision may occasionally return
false positives. To cope with this situation, we are using a multi-model Kalman



filter (i.a. as described in [9]). The detected balls’ positions are tracked in 2D,
relative to the robot. These measurements are then integrated into the best
fitting hypothesis or spawn new hyptoheses, if deemed outliers for the existing
hypotheses.

3.4 Localization

For localization, a particle filter is implemented in Python using NumPy and
SciPy. Perceived goalposts, field lines, and the field’s border are used as features
for evaluating the hypotheses for the robot’s position. Odometry for the predict
phase is provided by the motion module.

At the beginning of each kick-off and when re-entering the game after having
been penalized, for example, players assume they are within their own half of
the field, according to the rules. Symmetry is not actively broken, so the robots
continuously track their position, to distinguish the opponent’s goal from their
own.

To reduce the risk of scoring on our own goal in case a field player becomes
delocalized, the goalie informs all players when the ball is approaching its goal,
so players can correct their orientation if necessary. This only works under the
assumption, the goalie is localized and in the correct position.

3.5 Behavior

Striker

SearchForBall

GoToBall

is ball foundcan not find ball in current pose

always trueis ball lost

always true

is ball lost

is current state successful

always true

is facing to opponent goal

is far to ball

always trueis collision detected right

is close to ball

is ready to shoot

is collision detected left

is far to ballShoot

AvoidRight

ApproachBallLookAroundForBall

TurnForBall

TurnAroundBallToOpponentGoal

AvoidLeft

Dribble

Fig. 3. Generated visualization showing a part of the active striker’s behavior during
gamestate Playing



The behavior is implemented in Python using hierarchical state machines. A
visual representation of the agents behavior can be generated from these state
machines using DOT [10]. Figure 3 shows an examplary image of a part of our
striker’s behavior. The Team viewer can display and log all the communicated
data from robots and Game Controller. This helps to analyze game situations
post mortem.

The robots communicate with each other and share their own position, the
ball’s position, and their behaviour’s currently active state.

4 Tools

We mostly use different small tools for particular purposes.
For quick experiments with Nao, we created an extension to IPython, termed

inao. It provides an enhanced interactive Python shell to interact with NAO,
providing fast access to all the module’s proxies (motion, memory, vision). Please
watch the video 2 to get an impression of its use.

To help assessing the effects of code-changes (primarilly for behavior) to the
team’s in-game perfomance, we are using a modified version of the SimSpark 3D
soccer simulator from Nao-Team Humboldt3 and continuous integration to let
recent versions play against their predecessors.

Fig. 4. Team Viewer showing a replay of a situation in a game.

During games the Team Viewer (figure 4) helps in evaluating the overall
state of the robots as a team. It also records the team-communication send by
the robots and packets sent by the game controller. To a limited extend this

2 http://youtu.be/3e69bmgiH7I
3 https://github.com/BerlinUnited/SimSpark-SPL



enables us to replay certain situation for the robot’s behavior and evaluate its
response.

5 Conclusion and Future Work

We gave an overview of our architecture and approaches to the major algorithmic
challenges that have to be faced in humanoid robotic soccer. Recent work has
been started in robot detection and automating calibration (for joints, camera
matrix, and color) to reduce setup efforts. Also we are currently working on
improving our localization, since it is still fragile in the face of visual occlusions.

References

1. Endert, H., Wetzker, R., Karbe, T., Heßler, A., Brossmann, F.: The dainamite
agent framework. Technical report, Dai-labor TU Berlin (2006)

2. Endert, H., Karbe, T., Krahmann, J., Trollmann, F., Kuhnen, N.: The dainamite
2008 team description. RoboCup 2008 (2008)

3. Endert, H., Karbe, T., Krahmann, J., Trollmann, F.: The DAInamite 2009 team
description. RoboCup 2009 (2009)

4. Hessler, A., Berger, M., Endert, H.: Dainamite 2011 team description paper.
Robocup 2011 (2011)

5. Hessler, A., Xu, Y., Tuguldur, E.O., Berger, M.: DAInamite team description for
robocup 2013. RoboCup-2013: Robot Soccer World Cup XVII (2013)

6. Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K.,
Hirukawa, H.: Biped walking pattern generation by using preview control of zero-
moment point. In: ICRA. (2003) 1620–1626

7. Reinhardt, T.: Kalibrierungsfreie Bildverarbeitungsalgorithmen zur
echtzeitfähigen Objekterkennung im Roboterfußball. Master’s thesis, Hochschule
für Technik, Wirtschaft und Kultur Leipzig (2011)

8. RoboCup Technical Committee: Robocup standard platform league (nao) rule
book (2013)

9. Quinlan, M.J., Middleton, R.H.: Multiple model kalman filters: a localization
technique for robocup soccer. In Baltes, J., Lagoudakis, M.G., Naruse, T., Ghidary,
S.S., eds.: RoboCup 2009. Springer-Verlag, Berlin, Heidelberg (2010) 276–287

10. Gansner, E.R., North, S.C.: An open graph visualization system and its applica-
tions to software engineering. Software - Practice and Experience 30(11) (2000)
1203–1233


