
DAInamite

Team Description 2016

Yuan Xu, Martin Berger, Qian Qian and Erdene-Ochir Tuguldur
{yuan.xu, martin.berger, tuguldur.erdene-ochir}@dai-labor.de

DAI-Labor, Technische Universität Berlin, Germany
http://www.dainamite.de

Abstract. This document describes the progress of the team DAInamite
from DAI-Lab, TU-Berlin (Germany) regarding the SPL. We give a brief
overview of the team’s history, constitution, our general architecture, its
relevant components (motion, vision, and behavior), as well as employed
tools, and point out recent work.

1 Introduction

Team DAInamite’s origin lies within the 2D soccer simulation league, in which
it participated a few times since 2006 [1,2,3,4]. The team is active in the SPL
since 2012, making it to the quarter finals in RoboCup 2013 and finishing 2nd
place in Iran Open 2016.

Our code is mainly written in C++ and Python. The main advantage for
using Python is having a flexible programming language for rapid development
of new ideas and prototypes. The time-critical components for motion, vision and
localization are implemented in C++. The remaining modules such as behavior
and ball-tracking are implemented in Python.

2 Team Constitution

The team is constituted of undergradutes, graduate students, and postdocs of TU
Berlin, mainly from faculty IV (CS&EE) 1. The team is hosted at the chair Agent
Technologies in Business Applications and Telecommunication (AOT) and the
DAI-Laboratories (DAI-Lab) at TU Berlin. Prof. Sahin Albayrak is the head of
chair AOT and founder and head of the DAI-Lab. Concrete research interests of
the team members are agent-oriented software engineering, autonomous systems,
cooperation & coordination, and human-robot-interaction.

1 http://www.tu-berlin.de, http://www.dai-labor.de, http://www.aot.tu-berlin.de/,
http://www.dainamite.de

http://www.dainamite.de


3 Architecture

The architecture of our code is following the principles of agent architecture,
implementing for example the sense – think – act loop. Furthermore, due to the
nature of parallelism of sensors, processors and actuators, the program runs in
different threads for better performance, see Figure 1.

Fig. 1. Process of DAInamite’s software architecture. The modules in gray
are provide by Linux system or NaoQi. The other modules are developed for
RoboCup soccer, and run in different frequencies.

We are using Aldebaran’s NaoQi architecture as the basis, to benefit from
the following features: Call functions in both C++ and Python, and the ability to
execute functions also remotely over the network for experiments or debugging.

To achieve higher computational performance during soccer games, when the
system is run as a whole, we embed the Python code (using Boost Python) as a
local module into NAOqi’s process to remove communication overhead.

3.1 Motion

We developed our own motion module in C++ for better performance in soccer
games. Especially, we are using a fast (20 cm/s) omni-directional walk based on
the popular Linear Inverted Pendulum [6].



Our motion module is API-compatible to the original motion module AL-
Motion, developed by Aldebaran. The basic API and functionalities (such as
Self-collision avoidance, Smart Stiffness, etc.) of ALMotion are replicated, so our
motion module can serve as an enhanced replacement. Additionally, our motion
module provides odometry data and homogenous transformation matrices for
both cameras, derived from the robot’s configuration.

In order to test and debug our motion module easily, we divided it into
several different sub-modules. As the core part, DAIMotion can run as a local or
a remote module. It accesses the DCM through shared memory when it is run
locally on the robot; and data is communicated via NAOqi when it is run with
recorded logfiles or the SimSpark simulator.

3.2 Vision

Our team uses a vision algorithm inspired by [7]. Like our motion module, the
vision module is also implemented in C/C++ and replaces the Aldebaran video
device module. To accelerate image acquisition, we are using Video4Linux to
capture images from both cameras in parallel.

Currently, the vision module is able to detect goal posts, ball, field lines,
field border, and obstacles. Visual obstacle detection is done on a down sampled
image, treating regions with a color that differs from the detected field color as
obstacles, ignoring areas of prior detected objects (i.e. goal posts and lines). An
exemplary result of the vision processing is pictured in figure 2, where detected
entities are highlighted in different colors.

In order to detect the ball which does not have a unique color anymore,
a Convolutional Neural Networks (CNN) is used to classify image pathes as
ball. First, the detected visual obstacles are used as region of interest (ROI) for
possibly containing a ball, then the downsampled ROI is passed to CNN. If the
ROI is classified as ball, the ball’s contour is found by fitting a circle onto the
white and green edges using RANSAC. Furthermore, the confidence of the ball
is calculated by the size of the ball projected on the robot frame. We use Caffe[8]
to train the CNN, and tiny-cnn[9] for prediction. For performance reason, we are
using a small network at the moment, see Figure 3.

Furthermore, the vision module provides methods for debugging and config-
uration, such as configuring camera parameters and enabling or disabling pro-
cessing of either camera.

3.3 Localization

Since IranOpen 2016, a multi-hypotheses Kalman filter based localization was
used instead of the previous particle filter based localization. For performance
consideration, it is implemented as a C++ library with Python bindings. The
multi-hypotheses Kalman filter based localization surpasses the particle filter in
terms of position accuracy and also gives smoother robot walking trajectory dur-
ing position tracking. In addition to landmarks like field lines, field’s border and



Fig. 2. Visualization of the processing results for a sample image. Detected ele-
ments are highlighted: Field border (green), line-segments (white), visual obsta-
cles (red box) and ball (red circle). The red and blue circle around ball represent
ball confidence in image and robot frame respectively.

Fig. 3. The network architecture of Convolutional Neural Networks used for ball
detection.

L, T, X corners, the detection of center circle and penalty areas are also imple-
mented, and they are serving as less ambiguous features improving localization
accuracy. Similar to a sensor reseting step in particle filter, multiple samples
are generated when ambiguous landmarks are seen, which allows faster positon
recovery when the positon is lost. The confidence of each sample is calculated
based on the matching error of the global features.

We are not using any active means to break field symmetry, so the robots
have to continuously track their position, to distinguish the opponent’s goal from
their own.

To reduce the risk of scoring on our own goal in case a field player becomes
delocalized, the information communicated by the most stationary player, the
goalie, is used by the attacking field player to correct its orientation if necessary.
This only works under the assumption, the goalie is localized and roughly in the
correct position.



3.4 Behavior

Striker

SearchForBall

GoToBall

is ball foundcan not find ball in current pose

always trueis ball lost

always true

is ball lost

is current state successful

always true

is facing to opponent goal

is far to ball

always trueis collision detected right

is close to ball

is ready to shoot

is collision detected left

is far to ballShoot

AvoidRight

ApproachBallLookAroundForBall

TurnForBall

TurnAroundBallToOpponentGoal

AvoidLeft

Dribble

Fig. 4. Generated visualization showing a part of the active striker’s behavior
during gamestate Playing

The behavior is implemented in Python using hierarchical state machines. A
visual representation of the agents behavior can be generated from these state
machines using DOT [12]. Figure 4 shows an examplary image of a part of our
striker’s behavior. The Team viewer can display and log all the communicated
data from robots and Game Controller. This helps to analyze game situations
post mortem.

Based on the shared information unsing the standard message format, field
players coordinate based on who is closest to the ball, as well as their currently
active behavior state (if available) or the communicated intentions.

Some recent changes in the face of rule changes that more heavily punish
repeating the same rule offenses (up to removal from the half), we improved
the overall performance of the stand-up routine and are testing some improved
decisionmaking in cornercases to reduce the number of avoidable infractions.

4 Tools

We have a number of different small tools for particular purposes.
For quick experiments with Nao, we created an extension to IPython, named

inao. It provides an enhanced interactive Python shell to interact with NAO,



providing fast access to all the module’s proxies (motion, memory, vision). Please
watch the video 2 to get an impression of its use.

To help assessing the effects of code-changes (mainly for behavior) to the
team’s in-game perfomance, we are using a modified version of the SimSpark 3D
soccer simulator from Nao-Team Humboldt3 and continuous integration to let
recent versions play against their predecessors in a small tournament.

Fig. 5. Team Viewer showing a replay of a situation in a game.

During games the Team Viewer (figure 5) helps in evaluating the overall
state of the robots as a team. It also records the team-communication send by
the robots and packets sent by the game controller. To a limited extend this
enables us to replay certain situation for the robot’s behavior and evaluate its
response.

5 Conclusion and Future Work

We gave an overview of our current architecture and approaches to the major
algorithmic challenges that have to be faced in humanoid robotic soccer. We are
continuously working on automating calibration and reducing setup efforts. Also
we are still working on improving our localization and overall game performance.

References

1. Endert, H., Wetzker, R., Karbe, T., Heßler, A., Brossmann, F.: The dainamite
agent framework. Technical report, Dai-labor TU Berlin (2006)

2 https://youtu.be/3e69bmgiH7I
3 https://github.com/BerlinUnited/SimSpark-SPL

https://youtu.be/3e69bmgiH7I
https://github.com/BerlinUnited/SimSpark-SPL


2. Endert, H., Karbe, T., Krahmann, J., Trollmann, F., Kuhnen, N.: The dainamite
2008 team description. RoboCup 2008 (2008)

3. Endert, H., Karbe, T., Krahmann, J., Trollmann, F.: The DAInamite 2009 team
description. RoboCup 2009 (2009)

4. Hessler, A., Berger, M., Endert, H.: Dainamite 2011 team description paper.
Robocup 2011 (2011)

5. Hessler, A., Xu, Y., Tuguldur, E.O., Berger, M.: DAInamite team description for
robocup 2013. RoboCup-2013: Robot Soccer World Cup XVII (2013)

6. Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K.,
Hirukawa, H.: Biped walking pattern generation by using preview control of zero-
moment point. In: ICRA. (2003) 1620–1626

7. Reinhardt, T.: Kalibrierungsfreie Bildverarbeitungsalgorithmen zur
echtzeitfähigen Objekterkennung im Roboterfußball. Master’s thesis, Hochschule
für Technik, Wirtschaft und Kultur Leipzig (2011)

8. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadar-
rama, S., Darrell, T.: Caffe: Convolutional architecture for fast feature embedding.
arXiv preprint arXiv:1408.5093 (2014)

9. tiny cnn: A header only, dependency-free deep learning framework in c++11.
https://github.com/nyanp/tiny-cnn (2016)

10. RoboCup Technical Committee: Robocup standard platform league (nao) rule
book (2013)

11. Quinlan, M.J., Middleton, R.H.: Multiple model kalman filters: a localization
technique for robocup soccer. In Baltes, J., Lagoudakis, M.G., Naruse, T., Ghidary,
S.S., eds.: RoboCup 2009. Springer-Verlag, Berlin, Heidelberg (2010) 276–287

12. Gansner, E.R., North, S.C.: An open graph visualization system and its applica-
tions to software engineering. Software - Practice and Experience 30(11) (2000)
1203–1233

https://github.com/nyanp/tiny-cnn

	DAInamite
	Yuan Xu, Martin Berger, Qian Qian and Erdene-Ochir Tuguldur {yuan.xu, martin.berger, tuguldur.erdene-ochir}@dai-labor.de 

